1
|
Zeng X, Zhong W, He F, Huang C, Tong C, Pang J, Wu C. Tailoring structural and mechanical properties of konjac glucomannan/curdlan composite hydrogels by freeze-thaw treatment. Int J Biol Macromol 2024; 282:137116. [PMID: 39505174 DOI: 10.1016/j.ijbiomac.2024.137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
To improve the gelling properties of konjac glucomannan/curdlan (KGM/CUD) composite hydrogels, KGM/CUD composite hydrogels were treated by freeze-thawing. Herein, we focus on the effects of freeze-thaw cycles, freezing temperature, and freezing time on the structural and mechanical properties of KGM/CUD composite hydrogels. SEM and SAXS results showed that ice crystals generated by freezing extruded the molecular chains and increased the cross-linking density between molecular chains, which resulted in a denser gel microstructure. Among them, the freeze-thaw treatment at -20 °C for 12 h can effectively reduce the correlation length (ξ). According to mechanical testing, freeze-thawed gels for 48 h reached 408-, 826-, and 840-fold of the hardness, gumminess and chewiness of unfrozen, respectively. After freeze-thaw treatment, the energy storage modulus (G') of the gel increased to 9872 Pa, the residual mass after heating was up to 27.9 %, the water holding capacity (WHC) was reduced to 80.85 %. In addition, low-field nuclear magnetic resonance results confirmed that the freeze-thaw treatment promoted the formation of ice crystals from water molecules, which realized the transition of the water state, thus reducing the water mobility of the gel. This study provides a facile and efficient strategy for designing hydrogels products with exceptional texture and sensory characteristics.
Collapse
Affiliation(s)
- Xinxin Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fangjie He
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chen Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Cailing Tong
- Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
2
|
Liu YS, Shi P, Javed HU, Ren MH, Fu Z. Cross-linking Arenga pinnata starch and chitosan by citric acid: Structure and properties. Int J Biol Macromol 2024; 280:136098. [PMID: 39343268 DOI: 10.1016/j.ijbiomac.2024.136098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
In order to improve the processing and digestibility of the Arenga pinnata (Wurmb.) Merr. starch (APS), low concentration citric acid (CA) and chitosan (CS) were used for dual modification. The purpose of this study was to prepare APS and CS complexes with CA, the complexes (CA-CS-APS) physicochemical properties were investigated. The short-range ordered structure (DO), double helix structure (DO) and relative crystallinity (RC) were decreased; CA-CS resulted in the surface roughness of APS, but the particle integrity was preserved; the particle size of CA-CS-APS was increased. Compared with APS, the peak viscosity of CA-CS-APS was decreased from 2534 cP to 27 cP; CA-CS reduced the swelling power of APS, CA3%-CS-APS decreased from 19.00 g/g to 8.17 g/g. The gelatinization enthalpy was decreased after CA-CS modification from 3.25 J/g to 0.55 J/g. CA-CS-APS exhibits higher storage modulus and loss modulus (2067 Pa and 80 Pa). CA-CS significantly improved the anti-digestibility of APS, and the resistant starch (RS) content was increased from 32 % to 39 %. This study provided a simple and effective way to prepare modified starch, which had the potential as food additives or used as a base material for film preparation.
Collapse
Affiliation(s)
- Yuan-Sen Liu
- Institute of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China; College of Food Engineering, Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Beibu Gulf University, 535011 Qinzhou, China
| | - Ping Shi
- Institute of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China; College of Food Engineering, Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Beibu Gulf University, 535011 Qinzhou, China
| | - Hafiz Umer Javed
- College of Food Engineering, Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Beibu Gulf University, 535011 Qinzhou, China
| | - Min-Hong Ren
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China.
| |
Collapse
|
3
|
Zheng Y, Ma Y, Ukwatta RH, Xue F, Li C. Development of Novel Cornstarch Hydrogel-Based Food Coolant and its Characterization. Polymers (Basel) 2024; 16:569. [PMID: 38475253 DOI: 10.3390/polym16050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
The food, pharmaceutical, and supply transport storage chain is seeking coolants that come with plastic-free packaging, are nontoxic, environmentally friendly, robust, reusable, and reduce water waste. To meet this demand, a new food coolant based on cornstarch hydrogel was developed and tested using the regeneration method. This study investigated the reusability, water retention, rehydration, and surface cleanliness of the hydrogel, along with its application in freshness retention for fruits. The results of the gel strength and differential scanning calorimetry (DSC) analysis showed that the ideal concentration of cornstarch hydrogel was 8%. Freezing and thawing experiments demonstrated that the hydrogel had the potential to be used as a cooling medium for refrigerated fresh foods. Moreover, the gel strength, scanning electron microscopy images (SEM), DSC, and thermogravimetric analysis (TG) revealed that the freeze-thaw reuse only slightly affected its freezable water content and that its gel strength gradually increased during reuse. Water retention and rehydration tests showed that the hydrogels could be better preserved at -20 °C compared to 4 °C, and the water lost during reuse could be replenished through rehydration. The flexibility in terms of shape and size also allows the hydrogel ice to be used as a customized coolant for various food shapes, as demonstrated by preservation experiments. Additionally, washing the hydrogel after each use can result in a significant reduction in Escherichia coli, Salmonella, and Staphylococcus aureus concentrations by 3.03, 3.47, and 2.77 log CFU/hydrogel, respectively. Overall, the new cornstarch hydrogel coolant is a promising alternative to conventional ice, with the potential to serve as a food coolant.
Collapse
Affiliation(s)
- Yalu Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yan Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | | | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Feng L, Wu J, Cai L, Li M, Dai Z, Li D, Liu C, Zhang M. Effects of different hydrocolloids on the water migration, rheological and 3D printing characteristics of β-carotene loaded yam starch-based hydrogel. Food Chem 2022; 393:133422. [PMID: 35689924 DOI: 10.1016/j.foodchem.2022.133422] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/24/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The effects of guar gum (GG), xanthan gum (XG), carrageenan gum (CG), xanthan-guar gum blend (XG-GG), chitosan (CS), gum arabic (GA) on the water migration, rheological and 3D printing properties of β-carotene loaded yam starch-based hydrogel (BCH) were investigated to expand product form of β-carotene. The results showed that CS addition promoted the migration of weakly bound water to tightly bound water in BCH. Addition of GG, CG, XG-GG, CS and GA enhanced apparent viscosity, G', G'', hardness and gumminess of BCH. CG, XG-GG, CS and GA addition improved printing stability of BCH. The printed objects added with GG and CS displayed smooth lines with fine resolution and higher formability, which showed a more uniform pore distribution and thinner gel skeleton structure. The results of XRD showed that hydrocolloids addition decreased the relative crystallinity of BCH. A combination of physicochemical parameters could be used to discriminate samples through hierarchical cluster analysis.
Collapse
Affiliation(s)
- Lei Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Jingnan Wu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Lei Cai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, Jiangsu, Chinav
| | - Ming Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| | - Zhuqing Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Dajing Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China.
| | - Chunquan Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Liu Y, Meng‐Yun L, An F, Tan L, Shan X, Fu Z. In vitro digestibility, pasting and thermal properties of
Arenga pinnata
(
Wurmb
.)
Merr
starch citrate. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan‐Sen Liu
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Li Meng‐Yun
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Feng‐Kun An
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Lin‐Bin Tan
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Xue Shan
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University, 530004 Nanning China
| |
Collapse
|
6
|
Does the Freeze-Thaw Technique Affect the Properties of the Alginate/Chitosan Glutamate Gels with Posaconazole as a Model Antifungal Drug? Int J Mol Sci 2022; 23:ijms23126775. [PMID: 35743216 PMCID: PMC9224349 DOI: 10.3390/ijms23126775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are semi-solid systems with high flexibility, which, due to holding large amounts of water, are similar to natural tissues and are very useful in the field of biomedical applications. Despite the wide range of polymers available to form hydrogels, novel techniques utilized to obtain hydrogels with adequate properties are still being developed. The aim of this study was to evaluate the impact of the freeze–thaw technique on the properties of cryogels based on sodium alginate and chitosan glutamate with posaconazole as a model antifungal substance. The effect of the freezing and thawing process on the physicochemical, rheological, textural and bioadhesive properties of prepared cryogels was examined. Additionally, the antifungal activity against Candida albicans, Candida parapsilosis and Candida krusei of designed formulations was examined. It was shown that the freeze–thaw technique significantly improved viscosity, bioadhesiveness, textural properties and prolonged the in vitro posaconazole release. Moreover, alginate/chitosan glutamate cryogels exhibited higher values of inhibition zone in C. parapsilosis culture than traditional hydrogel formulations.
Collapse
|
7
|
HU JP, WANG SY, WANG DQ, ZONG KL, YANG JT. Effects of carrot powder on properties of pre-gelatinized waxy rice starch. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.81622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jin-Peng HU
- Anhui Science and Technology University, People’s Republic of China
| | - Sun-Yan WANG
- Anhui Science and Technology University, People’s Republic of China
| | - Da-Quan WANG
- Anhui Science and Technology University, People’s Republic of China
| | - Kai-Li ZONG
- Anhui Science and Technology University, People’s Republic of China
| | - Jian-Ting YANG
- Anhui Science and Technology University, People’s Republic of China
| |
Collapse
|
8
|
Luo Y, Cheng H, Niu L, Xiao J. Improvement in Freeze‐Thaw Stability of Rice Starch by Soybean Protein Hydrolysates‐Xanthan Gum Blends and its Mechanism. STARCH-STARKE 2021. [DOI: 10.1002/star.202100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunmei Luo
- School of Foods Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Liya Niu
- School of Foods Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - Jianhui Xiao
- School of Foods Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| |
Collapse
|