1
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
2
|
Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Compr Rev Food Sci Food Saf 2024; 23:e13275. [PMID: 38284604 DOI: 10.1111/1541-4337.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Syahla Salsabila
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - Aulal Muna
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - David Rusliman
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | | |
Collapse
|
3
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
4
|
Azizkhani M, Kavosi S, Partovi R. Improving the quality of the chicken fillet using chitosan, gelatin, and starch coatings incorporated with bitter orange peel extract during refrigeration. Food Sci Nutr 2023; 11:4700-4712. [PMID: 37576027 PMCID: PMC10420770 DOI: 10.1002/fsn3.3432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
The preserving potential of biopolymer coatings can be improved by adding natural antimicrobial and antioxidant compounds. The objective of this study was to evaluate the effect of natural coatings (gelatin (Gel), chitosan (Ch), and modified starch (MS)) incorporated with bitter orange peel extract (BOE) on the quality of the chicken fillets during cold. BOE had a high amount of phenolic compounds (145.28 mgGAE/g). Coating the fillets with pure BOE exerted a higher inhibitory effect against bacterial growth compared to composite coatings without extract. Lower microbial count (2-3 log CFU/g on days 9 and 12 of storage) was observed in the samples coated with composite biopolymers incorporated with BOE in comparison to the coatings without BOE. Composite coatings of Gel/MS/BOE showed lower FFA in the fillets followed by Gel/Ch/BOE and MS/Ch/BOE. The lowest TVB-N belonged to MS/Ch/BOE followed by Gel/Ch/BOE and Gel/MS/BOE which were 17.05, 17.39, and 19.40 mg/100 g at the end of the storage. Among the samples, pure BOE, Gel/MS/BOE, Gel/Ch/BOE, and MS/Ch/BOE showed the lowest peroxide value and the coatings containing chitosan had a slower rate of hydroperoxide generation. Drip loss showed a descending trend in all coated samples except for an enhancement in control and BOE-coated fillets, 6.42% and 6.39%, respectively, on day 12 of storage. Samples coated with Gel/MS and Gel/MS/BOE had the lowest drip loss during the storage period (5.96% and 5.98%, respectively). It should be noted that coatings containing chitosan had higher antimicrobial and antioxidant effects. The effect of the coatings as antimicrobial barriers and preservative agents were as follows: Gel/Ch/BOE > MS/Ch/BOE > Gel/MS/BOE. It can be concluded that the applied composite coatings in this work have a high potential to maintain and improve the quality of raw chicken fillets during storage in the refrigerator.
Collapse
Affiliation(s)
- Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Sara Kavosi
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| |
Collapse
|
5
|
Bose I, Roy S, Yaduvanshi P, Sharma S, Chandel V, Biswas D. Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4840. [PMID: 37445154 DOI: 10.3390/ma16134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Environmental concerns regarding the usage of nonrenewable materials are driving up the demand for biodegradable marine biopolymers. Marine biopolymers are gaining increasing attention as sustainable alternatives in various industries, including the food sector. This review article aims to provide a comprehensive overview of marine biopolymers and their applications in the food industry. Marine sources are given attention as innovative resources for the production of sea-originated biopolymers, such as agar, alginate, chitin/chitosan, and carrageenan, which are safe, biodegradable, and are widely employed in a broad spectrum of industrial uses. This article begins by discussing the diverse source materials of marine biopolymers, which encompass biopolymers derived from seaweed and marine animals. It explores the unique characteristics and properties of these biopolymers, highlighting their potential for food applications. Furthermore, this review presents a classification of marine biopolymers, categorizing them based on their chemical composition and structural properties. This classification provides a framework for understanding the versatility and functionality of different marine biopolymers in food systems. This article also delves into the various food applications of marine biopolymers across different sectors, including meat, milk products, fruits, and vegetables. Thus, the motive of this review article is to offer a brief outline of (a) the source materials of marine biopolymers, which incorporates marine biopolymers derived from seaweed and marine animals, (b) a marine biopolymer classification, and (c) the various food applications in different food systems such as meat, milk products, fruits, and vegetables.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Pallvi Yaduvanshi
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Somesh Sharma
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Vinay Chandel
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| |
Collapse
|
6
|
Sáez-Orviz S, Rendueles M, Díaz M. Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings- a review. Food Res Int 2023; 164:112381. [PMID: 36737965 DOI: 10.1016/j.foodres.2022.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Nowadays, conventional packaging materials made using non-renewable sources are being replaced by more sustainable alternatives such as natural biopolymers (proteins, polysaccharides, and lipids). Within edible packaging, one can differentiate between edible films or coatings. This packaging can be additivated with bioactive compounds to develop functional food packaging, capable of improving the consumer's state of health. Among the bioactive compounds that can be added are probiotics and prebiotics. This review novelty highlighted recent research on edible films and coatings additivated with probiotics and prebiotics, the interactions between them and the matrix and the changes in their physic, chemical and mechanical properties. When bioactive compounds are added, critical factors must be considered when selecting the most suitable production processes. Particularly, as probiotics are living microorganisms, they are more sensitive to certain factors, such as pH or temperature, while prebiotic compounds are less problematic. The interactions that occur inside the matrix can be divided into two main groups: covalent bonding (-NH2, -NHR, -OH, -CO2H, etc) and non-covalent interactions (van der Waals forces, hydrogen bonding, hydrophobic and electrostatic interactions). When probiotics and prebiotics are added, covalent and non-covalent interactions are modified. The physical and mechanical properties of films and coatings depend directly on the interactions that take place between the biopolymers that form their matrix. Greater knowledge about the influence of these compounds on the interactions that occur inside the matrix will allow better control of these properties and better understanding of the behaviour of edible packaging additivated with probiotics and prebiotics.
Collapse
Affiliation(s)
- S Sáez-Orviz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - M Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - M Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
7
|
Liu X, Liao W, Xia W. Recent advances in chitosan based bioactive materials for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
10
|
Dai Z, Han L, Li Z, Gu M, Xiao Z, Lu F. Combination of Chitosan, Tea Polyphenols, and Nisin on the Bacterial Inhibition and Quality Maintenance of Plant-Based Meat. Foods 2022; 11:foods11101524. [PMID: 35627094 PMCID: PMC9140481 DOI: 10.3390/foods11101524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plant-based meat products have gained attention in the food industry and with consumers. Plant-based meat products primarily comprise plant proteins and are rich in nutrients. However, the products are highly susceptible to bacterial contamination during storage. Biological preservatives are easily degradable alternatives to chemical preservatives and can preserve different kinds of food. In order to investigate the preservation properties of chitosan (CS), tea polyphenols (TPs), and nisin treatments on plant-based meats, the sensory evaluation, color difference, pH, TBARS, and the total plate count of E. coli, S. aureus, and Salmonella, indicators of the biological preservative-treated plant-based meat, were determined in this study. The experiment involved blank control- and biological preservative-treated samples. We found that the total microbial count exceeded the national standard provisions in the control samples stored for 14 days. The colors, tissue structures, and flavors of plant-based meat have gradually deteriorated, with the sensory score dropping from 90 to 52. The sample had a loose tissue structure and an obvious sour taste. However, the shelf life of the plant-based meat samples treated with different combinations of the biological preservatives increased compared to the shelf life of the control samples. After 56 d of storage, 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin sensory reduction to 56, the total number of colonies and S. aureus were 4.91 and 2.95 lg CFU/g, approaching the national standard threshold; E. coli was 2 lg CFU/g, reaching the national standard threshold. Thus, the samples treated with 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin had the longest shelf life (56 days) among all experimental groups. Hence, this study reveals that a combination of biological preservatives may be a non-toxic alternative for the efficient preservation of plant-based meat products.
Collapse
Affiliation(s)
- Zenghui Dai
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Linna Han
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
11
|
Araby E, Abd El‐Khalek HH, Amer MS. Synergistic effects of
UV‐C
light in combination with chitosan nanoparticles against foodborne pathogens in pomegranate juice with enhancement of its health‐related components. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eman Araby
- Radiation Microbiology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority Nasr City Egypt
| | - Hanan H. Abd El‐Khalek
- Radiation Microbiology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority Nasr City Egypt
| | - Mahmoud S. Amer
- National Institute of Laser Enhanced Science Cairo University Giza Egypt
| |
Collapse
|
12
|
Zhang R, Li Q, Yang L, Dwibedi V, Ge Y, Zhang D, Li J, Sun T. The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme–chitosan gradual sustained release composite coating. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ran Zhang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Qiuying Li
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Lili Yang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Vagish Dwibedi
- University Institute of Biotechnology Chandigarh University Mohali Punjab 140413 India
| | - Yonghong Ge
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Defu Zhang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jianrong Li
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Tong Sun
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| |
Collapse
|
13
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr Polym 2022; 277:118876. [PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - A A Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture and vit. Medicine, Qassim University, 51452 Burydah, Saudi Arabia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
14
|
Wang H, Ding F, Ma L, Zhang Y. Recent advances in gelatine and chitosan complex material for practical food preservation application. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongxia Wang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Fuyuan Ding
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | - Liang Ma
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| |
Collapse
|