1
|
Zhang M, Bai B, Cheng H, Ye X, Chang J, Chen S, Chen J. A method for gel grade determination and application evaluation of two citrus pectins. Int J Biol Macromol 2023; 250:126129. [PMID: 37541470 DOI: 10.1016/j.ijbiomac.2023.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Citrus paradisi Macf. cv. Changshanhuyou and Citrus paradisi Macf. cv. Star Ruby are two emerging processed citrus fruits. The processing produces lots of peel wastes rich in pectin. While more attentions were paid on pectin's functional properties, the quality about commercial application like gel grade was little investigated. In this study, we established a method for gel grade determination based on texture analyzer, the new method is economical and can be used on a large scale in the laboratory. The commercial application related qualities of two citrus pectins were also studied in detail. The results showed that the yields of Changshanhuyou and Star Ruby pectins (CHP and SRP) were 20.23 % and 18.33 %, respectively. The indexes of CHP and SRP mostly were in line with the commodity standards, except the dry weight loss. The gel grades of CHP and SRP determined by the new method were 109.9 and 96.8, respectively. The CHP aqueous solution exhibited higher apparent viscosity and better performance in stabilizing acidified milk drink (AMD) compared with commercial pectin. From the view of commercial application related qualities and functional properties, CHP could be a good potential commercial pectin.
Collapse
Affiliation(s)
- Meng Zhang
- College of Agriculture & Biotechnology, College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Bingyao Bai
- College of Agriculture & Biotechnology, College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Agriculture & Biotechnology, College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xingqian Ye
- College of Agriculture & Biotechnology, College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jianguo Chang
- Yantai DSM Andre Pectin Co., Ltd., Yantai 264100, China
| | - Shiguo Chen
- College of Agriculture & Biotechnology, College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jianle Chen
- College of Agriculture & Biotechnology, College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| |
Collapse
|
2
|
Zheng C, Huang Y, Liang X, Shen B, Zhang G, Fei P. Novel Pickering emulsion gels stabilized solely by phenylalanine amidated pectin: Characterization, stability and curcumin bioaccessibility. Int J Biol Macromol 2023; 244:125483. [PMID: 37343609 DOI: 10.1016/j.ijbiomac.2023.125483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Pickering emulsion gels represent a novel class of non-toxic and biocompatible emulsions, offering extensive applications in the pharmaceutical and food additive sectors. This study delineates the synthesis of Pickering emulsion gels utilizing native and amidated pectin samples. Phenylalanine amidated pectin (AP) was procured via an ultra-low temperature enzyme method, while the control group (LP) adhered to an identical procedure without papain catalysis. Experimental outcomes revealed that the AP Pickering emulsion gel manifested superior stability compared to pectin emulsion samples (PE and LP). The Pickering emulsion gel from 5 % amidated pectin (5AP) retained stability throughout a 14-day emulsion stability assessment. Furthermore, all emulsion samples were evaluated for their capacity to deliver and sustain curcumin within an in vitro digestion simulation. Rheological properties and oil droplet size results indicated that the 5AP Pickering emulsion gel exhibited optimal cream index and emulsion stability, effectively inhibiting premature water-oil stratification within the emulsion and augmenting curcumin bioaccessibility. Within the in vitro digestion simulation, the 5AP Pickering emulsion gel demonstrated the highest curcumin bioaccessibility, measured at 17.96 %.
Collapse
Affiliation(s)
- Chenmin Zheng
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yufan Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaojing Liang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Bihua Shen
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Peng Fei
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
3
|
Preparation of amidated pectins through enzymatic method: Structures, hydrogel properties and its application potential in fat substitutes. Food Res Int 2022; 160:111719. [DOI: 10.1016/j.foodres.2022.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
|