1
|
Yin M, Dai K, Qiu Z, Shi Y, Shi J, Matsuoka R, Jiang Q, Fang Z, Shi W, Wang X. Effect of temperature fluctuations during frozen storage on ice crystal distribution and quality of tilapia (Oreochromis mossambicus). Food Chem 2025; 463:141104. [PMID: 39241426 DOI: 10.1016/j.foodchem.2024.141104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The study constructed a model of temperature fluctuation (TF, -20 °C ∼ -10 °C) during frozen status to build a link between the tilapia fillets muscle of ice crystal morphology, moisture distribution, protein oxidation index and the edible quality. When TF treatment more than 3 times, the brightness, color and hardness of frozen tilapia fillets decreased significantly, and the cooking loss and thawing loss increased significantly. The free and unconjugated water in frozen fish fillets exceeded 97 % and did not change much after 9 times TF. The K and TVB-N values were within the safety standards (K < 60 %, TVB-N < 30 mg N/100 g). The ice crystals in the tissues were significantly increased. Protein carbonyls and Ca2+-ATPase were significantly reduced, and secondary structures were irregular. Network correlation analysis showed that ice crystal morphology was significantly correlated with the color, texture and protein oxidation index of frozen tilapia fillets. The results would provide theoretical approach for the transportation and sales of tilapia industrial enterprises.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Ke Dai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuyao Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | | | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| |
Collapse
|
2
|
Wang H, Wang Y, Xu K, Pan S, Shi W, Wang X. Changes in water-soluble taste compounds of tilapia (Oreochromis niloticus) fillets subjected to different thawing methods during long-term frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7204-7213. [PMID: 38666454 DOI: 10.1002/jsfa.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The taste of fish is highly dependent on the composition of free amino acids (FAAs) and nucleotides. The present study aimed to investigate the effect of long-term frozen storage periods (-18 °C, up to 6 months) and thawing methods [water thawing (WT, 25 °C), air thawing (AT, 25 °C), and chilled air thawing (CAT, 4 °C)] on the taste quality of tilapia (Oreochromis niloticus) fillets. RESULTS The results showed that increase in bitter FAAs of CAT samples was 150.57% at 6 months of storage, which was lower than that of AT and WT. Glycine was the most abundant FAA and CAT maintained the highest sweet FAAs (249.90 mg/100 g). Additionally, the inosine monophosphate (IMP) of CAT samples were 1.18 and 1.09 times higher than that of WT and AT, respectively, at a frozen period of 6 months. In particular, the increase in equivalent umami concentration (EUC) values ranged from 24.25% to 103.16% in the three groups during the first 2 months. Data from principal component analysis (PCA) and orthogonal partial least-squares discrimination analysis (OPLS-DA) indicated that the taste quality was highly correlated with high levels of FAAs, hypoxanthine inosine (HxR) and hypoxanthine (Hx) as the storage time progressed. CONCLUSION In general, CAT is beneficial in maintaining the taste quality of tilapia fillets during frozen storage, and frozen durations for 2 months enhances the umami flavor. This study provides useful information for the preservation of frozen aquatic products during the storage and thawing, and enrich the theoretical knowledge of the flavor chemistry of fish products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongli Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingying Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Ke Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Chu Y, Ding Z, Xie J. The application of ice glazing containing D-sodium erythorbate combined with vacuum packaging to maintain the physicochemical quality and sweet/umami non-volatile flavor compounds of frozen stored large yellow croaker (Pseudosciaena crocea). Food Res Int 2024; 175:113657. [PMID: 38129018 DOI: 10.1016/j.foodres.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Ice glazing containing 0.3 % D-sodium erythorbate (DSE), combined with vacuum packaging, was used as a method to maintain the quality of large yellow croaker during frozen storage. This study aimed to assess various aspects, including water properties (water holding capacity and moisture distribution), protein-related characteristics (secondary and tertiary structure of myofibrillar protein), freshness indicators (K value and total volatile base nitrogen (TVB-N)), and non-volatile flavor compounds (free amino acids (FAAs) and nucleotides) in samples stored for 300 days at -23 °C. The results showed that vacuum packaging had a significant inhibitory effect on the growth of ice crystal. Notably, it successfully maintained the cross-sectional area of nearly all ice crystals below 20,000 μm2, effectively curtailing water loss. Simultaneously, the combination of vacuum packaging with the complex ice glaze effectively mitigated the degradation of IMP and free amino acids, maintaining low levels of K value (12.85 %) and TVB-N (11.28 mg N/100 g) throughout the 300-day frozen storage, retaining first-class freshness. Among the various treatment modalities assessed, the combined application of vacuum packaging and 0.3 % DSE-infused ice glazing emerged as the most effective in terms of preservation outcomes. This efficacious combination shows promising potential for the frozen storage of aquatic products and is therefore recommended for practical implementation.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Zhaoyang Ding
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
4
|
Yin M, Xi Y, Shi Y, Qiu Z, Matsuoka R, Wang H, Xu C, Tao N, Zhang L, Wang X. Effects of temperature fluctuations on non-volatile taste compounds in tilapia fillets (Oreochromis niloticus). Food Chem 2023; 408:135227. [PMID: 36549164 DOI: 10.1016/j.foodchem.2022.135227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In this study, the effect of temperature fluctuations on the taste quality of tilapia fillets during frozen storage was investigated. Major temperature-responsive factors included free amino acids (FAAs) and flavor nucleotides in fish fillets, which were identified using multidimensional infrared spectroscopy (MM-IR). The main FAA in tilapia fillets is a sweet amino acid (glycine). Compared with the control group, the umami FAAs and sweetness FAAs were significantly increased, and the total FAAs content increased to 1.30 times after the ninth fluctuation, reaching the highest level (611.16 ± 73.60 mg/100 g). Considering the equivalent umami intensity values, adenosine monophosphate and inosine monophosphate were retained during the first and second temperature fluctuations. In addition, the content of Na+, K+, and Ca2+ decreased (P < 0.05). Therefore, MM-IR is an effective method to identify taste components. With regard to taste quality, temperature fluctuations in the twofold range have an umami-enhancing effect.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Yinci Xi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuyao Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | | | - Hongli Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222301, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, China.
| |
Collapse
|
5
|
The cryoprotective activity of tilapia skin collagen hydrolysate and the structure elucidation of its antifreeze peptide. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Chen S, Wu W, Mao S, Li K, Zhang H. Optimization of a novel vacuum sublimation-rehydration thawing process. J Food Sci 2023; 88:259-272. [PMID: 36477835 DOI: 10.1111/1750-3841.16407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
To better guarantee the quality of the thawed meat, maximize the thawing rate, and minimize the system energy consumption, the multiparameter and multi-objective coupling optimizations for the newly proposed vacuum sublimation-rehydration thawing (VSRT) process was conducted. The polynomial nonlinear regression equations of single and comprehensive objectives were established by the central composite rotatable design, and the corresponding test of fitting degree and the analysis of influencing factors order were carried out. Furthermore, the interaction effects of influencing factors were investigated through the response surface methodology and were experimentally validated to obtain the optimal process parameters. The results showed that the established regression equations were in good agreement with the experimental values. For the different objectives, there were great differences in the influence order and interaction of factors. In the sublimation and rehydration stages, there existed an optimal region in the response surface to achieve a better value for the single and comprehensive objectives. When the sublimation time was 19 min, the heating plate temperature was 26°C, the rehydration water volume was 1634 ml, the rehydration water temperature was 29°C, the thawing time was relatively short (1.00 h), and the thawing loss (1.19%), the total color difference (1.02), and the system-specific energy consumption (0.026 kW h/kg) were relatively low. The comprehensive performance of the VSRT system reached the best state. PRACTICAL APPLICATION: The purpose of this work is to make the novel vacuum sublimation-rehydration thawing method not only better guarantee the quality of thawed meat but also maximize the thawing rate and minimize the energy consumption of the system, which can provide a new idea and reference for the development of new high-efficiency thawing equipment.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China.,Vehicle Energy and Safety Laboratory, Department of Mechanical Engineering, Ningbo University of Technology, Ningbo, P. R. China
| | - Weidong Wu
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shijie Mao
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Kun Li
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hua Zhang
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
7
|
Wang H, Shi W, Wang X. Differential proteomic analysis of frozen tilapia (Oreochromis niloticus) fillets with quality characteristics by a tandem mass tag (TMT)-based strategy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Developing cold air assisted radio frequency tempering protocol based on heating rate, uniformity, and quality of frozen chicken breast. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|