1
|
Beya MM, Netzel ME, Sultanbawa Y, Smyth H, Hoffman LC. Kakadu plum (Terminalia ferdinandiana) bioactivity against spoilage microorganisms and oxidative reactions in refrigerated raw beef patties under modified atmosphere packaging. Meat Sci 2023; 204:109268. [PMID: 37379705 DOI: 10.1016/j.meatsci.2023.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Raw beef patties were treated with either 450 ppm of Sodium metabisulphite (SMB), or Kakadu plum powder (KPP) (0.2%, 0.4%, 0.6%, 0.8%) or no additive (negative control) and stored under Modified Atmosphere Packaging at 4 ± 1 °C for 20 days. Lipid oxidation, microbial growth rate, pH, instrumental color, and surface myoglobin were studied. Total phenolic compounds (TPC) and vitamin C of the KPP were also measured. The TPC was 13.9 g GAE/ 100 g dry weight (DW) and for vitamin C, the L-AA (l-ascorbic acid) and DHAA (dehydroascorbic acid) were 12.05 g/100 g and 0.5 g/ 100 g DW, respectively. The experimental results indicated that lipid oxidation was significantly delayed throughout the storage period for KPP-treated samples compared to both the negative control and SMB-treated samples. KPP at levels of 0.2% and 0.4% in the raw beef patties were efficient in slowing down the microbial growth rate compared to the negative control; however, SMB had a higher antimicrobial activity. The pH, the redness as well as metmyoglobin formation in the raw beef patties were reduced by the inclusion of the KPP in treated samples. A correlation (r = -0.66) was noted between KPP treatments and lipid oxidation, but there was no correlation (r = -0.006) between KPP treatment and microbial growth. This study demonstrates that KPP could be used as natural preservative for shelf-life extension of raw beef patties.
Collapse
Affiliation(s)
- Michel M Beya
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael E Netzel
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Heather Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Louwrens C Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia.
| |
Collapse
|
2
|
Zhou Y, Phan ADT, Akter S, Bobasa EM, Seididamyeh M, Sivakumar D, Sultanbawa Y. Bioactive Properties of Kakadu Plum-Blended Products. Molecules 2023; 28:molecules28062828. [PMID: 36985798 PMCID: PMC10056586 DOI: 10.3390/molecules28062828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Kakadu plum (Terminalia ferdinandiana), endemic to Australia, is growing in popularity due to its high levels of vitamin C and strong antioxidant properties. In this study, Kakadu plum fruit powder was used as a functional food ingredient with other plant materials to develop value-added products to enhance their nutritional and commercial value. The present study determined the bioactive properties of nine products, including three Kakadu plum fruit powder samples produced from different processing batches and five Kakadu plum-blended products. Vitamin C, the total phenolic content, and the ellagic acid content were determined. Bioactive properties such as antioxidant, antidiabetic, and antimicrobial assays were also performed. Cytotoxicity was tested to obtain more specific product information regarding food safety. Kakadu plum-blended products showed lower cytotoxicity and lower bioactive properties (antioxidant and antibacterial activities) in comparison to Kakadu plum powder. However, overall, most of the bioactive properties were shown to be higher in the blends when compared with the commercial blueberry powder as a benchmark antioxidant product. Therefore, there is great potential for Kakadu plum to contribute to the growing functional food and ingredient markets.
Collapse
Affiliation(s)
- Yuntao Zhou
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Saleha Akter
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Eshetu Mulisa Bobasa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| |
Collapse
|
3
|
Phan ADT, Zhang J, Seididamyeh M, Srivarathan S, Netzel ME, Sivakumar D, Sultanbawa Y. Hydrolysable tannins, physicochemical properties, and antioxidant property of wild-harvested Terminalia ferdinandiana (exell) fruit at different maturity stages. Front Nutr 2022; 9:961679. [PMID: 35967775 PMCID: PMC9372433 DOI: 10.3389/fnut.2022.961679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
Terminalia ferdinandiana Exell., also known as Kakadu plum, is a wild-harvested native Australian fruit with limited information on how maturity is affecting the phytonutritional properties and bioactivities of the fruit. Thus, this study investigated changes in hydrolysable tannins, phenolic acids, sugar profile, standard physicochemical parameters, and antioxidant-scavenging capacity of wild-harvested Kakadu plum fruits at four different maturity stages, from immature to fully mature. Fruits harvested <25, 25-50, 50-75, and 75-100% degree of fullness were classified as highly immature (stage 1), immature (stage 2), semi-mature (stage 3), and fully mature (stage 4), respectively. Results showed that chebulagic acid, geraniin, chebulinic acid, castalagin, punicalagin, and gallic acid continuously decreased during fruit maturity, while elaeocarpusin, helioscopin B, corilagin, 3,4,6-tri-O-galloyl-S-glucose, and ellagic acid increased at the beginning of fruit growth (from stage 1 to 2), but decreased when the fruits reached their full maturity (stage 4). The levels of hydrolysable tannins and phenolic acids in fully mature fruits (stage 4) were significantly (p ≤ 0.05) lower than that in their immature counterparts (stages 1 and 2). Total phenolic content (TPC) and DPPH antioxidant radical-scavenging activity did not vary significantly between different maturity stages. Pearson's correlation coefficient test indicated that TPC and DPPH positively (p ≤ 0.05) correlate with most of the studied tannin compounds. Sugars (glucose, fructose, and sucrose), total soluble solid content, and titratable acidity increased during the fruit development. Furthermore, principal component analysis (PCA) revealed the difference between the immature and mature samples, based on their nutritional profile and bioactive compounds. The PCA results also suggested a considerable variability between the individual trees, highlighting the challenges of wild-harvest practice.
Collapse
Affiliation(s)
- Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Jiale Zhang
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Sukirtha Srivarathan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Michael E Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| | - Dharini Sivakumar
- Department of Crop Sciences, Phytochemical Food Network Research Group, Tshwane University of Technology, Pretoria, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD, Australia
| |
Collapse
|
4
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
5
|
Protective Effect and Potential Antioxidant Role of Kakadu Plum Extracts on Alcohol-Induced Oxidative Damage in HepG2 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serial alcohol consumption causes alcoholic liver disease (ALD), which can lead to fatty liver, hepatitis, and cirrhosis. Terminalia ferdinandiana (Kakadu plum) is an indigenous fruit of Australia, which is utilized as a functional food. It is a commercially important antioxidant as it contains a more eloquent level of ascorbic acid than other oranges. In this study, we analyzed the chemical constituents of vitamin C, gallic acid, ellagic acid, and daidzin via High-performance liquid chromatography (HPLC) in the Kakadu plum from two different regions including the Northern Territory (NT) and Western Australia (WA), and compared their biochemical properties. The vitamin C content was much higher (almost 70%) in Kakadu plum (KKD) from the NT than WA. Moreover, ROS generation was inhibited significantly in HepG2 (human hepatoma) cells with the KKD-NT extract treatment when compared to the KKD-WA extract treatment. The cytotoxicity produced by ethanol was significantly suppressed in response to the treatment with both of the samples. In addition, our samples (KKD-NT and KKD-WA) increased the activity of two key enzymes involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) that metabolize ethanol. These results show the biochemical confirmation of the mechanism by which KKD exhibits its biological functions including relief from alcohol hangovers as well as protection of the liver cells by the suppression of ROS production and toxic insults.
Collapse
|