Cruz S, Checa N, Tovar H, Cejudo-Bastante MJ, Heredia FJ, Hurtado N. Semisynthesis of Betaxanthins from Purified Betacyanin of
Opuntia dillenii sp.: Color Stability and Antiradical Capacity.
Molecules 2024;
29:2116. [PMID:
38731607 PMCID:
PMC11085281 DOI:
10.3390/molecules29092116]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The availability of pure individual betalains in sufficient quantities which permit deeper understanding is still a challenge. This study investigates the high-yielding semisynthesis of betaxanthins using betalamic acid from a natural source (Opuntia dillenii), followed by condensation with ʟ-amino acids and further purification. Moreover, the color stability of the four synthesized individual betaxanthins, namely proline (ʟ-ProBX), alanine (ʟ-AlaBX), leucine (ʟ-LeuBX), and phenylalanine (ʟ-PheBX) betaxanthins, was investigated at different pHs. Their relative contribution to free radical scavenging was also scrutinized by TEAC and DPPH. ʟ-AlaBX and ʟ-LeuBx showed a significantly (p < 0.05) higher antioxidant activity, whereas ʟ-ProBX was the most resistant to the hydrolysis of betaxanthin and hence the least susceptible to color change. The color stability was strongly influenced by pH, with the color of ʟ-ProBX, ʟ-LeuBX, and ʟ-AlaBX at pH 6 being more stable, probably due to the easier hydrolysis under acid conditions. The semisynthesis and purification allowed us to have available remarkable quantities of pure individual betaxanthins of Opuntia dillenii for the first time, and to establish their color properties and antioxidant capacity. This study could be a step forward in the development of the best natural food colorant formulation, based on the betalain structure, which is of special interest in food technology.
Collapse