1
|
Li N, Zhang X, Zhu J, Li Y, Liu R, Zhang P, Wei S, Fu X, Peng X. Optimization and Preparation of Ultrasound-Treated Whey Protein Isolate Pickering Emulsions. Foods 2024; 13:3252. [PMID: 39456318 PMCID: PMC11506998 DOI: 10.3390/foods13203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to create Pickering emulsions with varying oil fractions and assess the impact of ultrasonic treatment on the properties of Whey Protein Isolates (WPIs). At 640 W for 30 min, ultrasound reduced WPI aggregate size, raised zeta potential, and improved foaming, emulsifying, and water-holding capacities. FTIR analysis showed structural changes, while fluorescence and hydrophobicity increased, indicating tertiary structure alterations. This suggests that sonication efficiently modifies WPI functionality. Under ideal conditions, φ = 80 emulsions were most stable, with no foaming or phase separation. Laser scanning revealed well-organized emulsions at φ = 80. This study provides a reference for modifying and utilizing WPI.
Collapse
Affiliation(s)
- Nan Li
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Xiaotong Zhang
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Juan Zhu
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Yinta Li
- Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China; (Y.L.); (R.L.); (S.W.)
| | - Rong Liu
- Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China; (Y.L.); (R.L.); (S.W.)
| | - Peng Zhang
- College of Pharm, Yantai University, Yantai 264005, China;
| | - Suzhen Wei
- Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China; (Y.L.); (R.L.); (S.W.)
| | - Xuejun Fu
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| |
Collapse
|
2
|
Wen L, Dai H, Li S, Liang H, Li B, Li J. Improvement of processable properties of plant-based high internal phase emulsions by mung bean protein isolate based on pH shift treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6966-6976. [PMID: 38619073 DOI: 10.1002/jsfa.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND High internal phase emulsions (HIPEs) are unique emulsion systems that transform liquid oil into solid-like fats, thus avoiding the use of saturated fat and leading to a healthier and more sustainable food system for consumers. HIPEs with oil volume fraction (ϕ) of 75-85% were fabricated with mung bean protein isolate (MPI) under different pH shift treatments at 1.0% concentration through the one-step method. In the present study, we investigated the physical properties, microstructures, processing properties, storage stability and rheological properties of HIPEs. RESULTS The results suggested that the properties of MPI under different pH shift treatments were improved to different degrees, stabilizing HIPEs (ϕ = 75-85%) with various processability to meet food processing needs. Under alkali shift treatment conditions, the particle size of MPI was significantly reduced with better solubility. Moreover, the exposure of hydrophobic groups increased the surface hydrophobicity of MPI, awarding MPI better emulsifying properties, which could stabilize the HIPEs with higher oil phase fraction. In addition, the MPI under pH 12 shift treatment (MPI-12) had the best oil-carrying ability to form the stable HIPEs with oil volume fraction (ϕ) up to 85%, which was the highest oil phase in preparing the HIPEs using plant protein solely at a low concentration under neutral conditions. CONCLUSION A series of stable HIPEs with different processing properties was simply and feasibly fabricated and these are of great potential in applying edible HIPEs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Wang Y, Shen J, Zou B, Zhang L, Xu X, Wu C. Unveiling the critical pH values triggering the unfolding of soy 7S and 11S globulins and enhancing their encapsulation efficiency. Food Chem 2024; 445:138707. [PMID: 38354644 DOI: 10.1016/j.foodchem.2024.138707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The pH-shifting process is an effective encapsulation method, and it is typically performed at extreme alkaline pH, which severely limits the application. In this study, we found that there were critical pH for the unfolding proteins during pH-shifting from 7 to 12, and upon the critical pH, physiochemical characteristics of protein greatly changed, leading to a sharp increase of encapsulation of hydrophobic actives. Firstly, the critical pH for β-conglycinin (7S) or Glycinin (11S) unfolding was determined by multispectral technology. The critical pH for 7S and 11S were 10.5 and 10.3, respectively. The encapsulation efficiency (EE) obtained by β-conglycinin-curcumin nanocomposite (7S-Cur) (88.80 %) and Glycinin-curcumin nanocomposite (11S-Cur) (88.38 %) at critical pH was significantly higher than that obtained by pH 7 (7S-Cur = 16.66 % and 11S-Cur = 15.78 %), and both values were close to EE obtained by at 12 (7S-Cur = 95.16 % and 11S-Cur = 94.63 %). The large-scale application of hydrophobic functional compounds will be enhanced by the experimental results.
Collapse
Affiliation(s)
- Yuying Wang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Jing Shen
- Ningjin Market Supervision Administration, Dezhou 253400, China
| | - Bowen Zou
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Ling Zhang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Xianbing Xu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Chao Wu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China.
| |
Collapse
|
4
|
Huang X, Xia B, Liu Y, Wang C. Non-covalent interactions between rice protein and three polyphenols and potential application in emulsions. Food Chem X 2024; 22:101459. [PMID: 38803669 PMCID: PMC11129171 DOI: 10.1016/j.fochx.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Rice protein (RP) and polyphenols are often used in functional foods. This study investigated the non-covalent interactions between RP and three polyphenols (curcumin, CUR; quercetin, QUE; resveratrol, RES) and used the complexes as emulsifiers to create emulsions. Three polyphenols interacted with RP to varying extents, with QUE showing the greatest binding affinity and inducing the greatest alterations in its secondary structure. Molecular docking analysis elucidated the driving forces between them including hydrophobic interactions, hydrogen bonding, and van der Waals forces. Combination with QUE or RES induced structural changes of RP, increasing particle size of complexes. The synergistic effect of polyphenols and protein also enhanced radical scavenging capacity of complexes. Compared to pure protein, all complexes successfully created emulsions with smaller particle size (378-395 nm vs. 470 nm), higher absolute potential (37.43-38.26 mV vs. 35.62 mV), and greater lipid oxidation stability by altering protein conformation.
Collapse
Affiliation(s)
- Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxuan Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Zhou Y, Tu Y, Yang J, Qian K, Liu X, Fu Q, Xu X, Chen S. Enhancing the Stability, Solubility, and Antioxidant Activity of Cinchonine through Pharmaceutical Cocrystallization. Pharm Res 2024; 41:1257-1270. [PMID: 38844745 DOI: 10.1007/s11095-024-03712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Cinchoninze hydrochloride solves the problem of the low solubility of cinchonine, but it is unstable and susceptible to deliquescence. In this study, we designed and prepared cinchonine cocrystal salts or cinchonine salts with better stability, solubility and antioxidant activity than cinchonine. METHOD We successfully synthesized and characterized three cinchonine salts, namely, cinchonine-fumaric acid, cinchonine-isoferulic acid, and cinchonine-malic acid. The high humidity (92.5% RH) and high temperature (60°C) tests were conducted to determine the physical stability and hygroscopicity of cinchonine hydrochloride, cinchonine and three cinchonine salts. And the ultraviolet spectrophotometry was conducted to determine the equilibrium solubility and intrinsic dissolution rate of cinchonine and salts. Moreover, the DPPH, ABTS, and FRAP assays determined the antioxidant activity of cinchonine and salts. RESULT Compared with cinchonine hydrochloride and cinchonine, all three cinchonine salts exhibited good physical stability over 15 days under high humidity (92.5% RH) and high temperature (60°C) conditions. While cinchonine and cinchonine hydrochloride are categorized as hygroscopic and deliquescent, respectively, three cinchonine salts are classified as slightly hygroscopic, meaning that they have a lower hygroscopicity than cinchonine and cinchonine hydrochloride. And three cinchonine salts had higher equilibrium solubility, faster intrinsic dissolution rates, and higher antioxidant activity in comparison to cinchonine. Moreover, they showed a "spring and parachute" pattern in the phosphate buffer (pH = 6.8). CONCLUSION Cocrystallization technology is a viable option for improving cinchonine's poor physicochemical qualities.
Collapse
Affiliation(s)
- Yi Zhou
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yan Tu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Jie Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Kun Qian
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Xueyang Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Qingxia Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Xianghong Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Shiyu Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| |
Collapse
|
6
|
Wang Q, Tang Z, Cao Y, Ming Y, Wu M. Improving the solubility and interfacial absorption of hempseed protein via a novel high pressure homogenization-assisted pH-shift strategy. Food Chem 2024; 442:138447. [PMID: 38244439 DOI: 10.1016/j.foodchem.2024.138447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
A pH shift treatment aided by high pressure homogenization (HPH) with various pressures (0-120 MPa) was employed to structurally modify hempseed protein isolate (HPI). Compared with individual pH shift or HPH treatment, HPH-assisted pH shift improved the structural flexibility of HPI, as revealed by the increased random coil in protein secondary structure. With the incorporation of HPH into pH shift, the intrinsic fluorescence intensity was remarkably attenuated and redshifted, whereas the surface hydrophobicity was pronouncedly boosted, indicating the extensive unfolding of protein structure. Moreover, the cotreated HPI exhibited a smaller and more homogenous particle size, notably at a higher pressure. Consequently, the solubility was drastically raised by the cooperated treatments, to the maximum value (62.8 %) at 120 MPa. These physicochemical changes in the cotreated HPI facilitated a consolidated interfacial activity. Moreover, the cooperated treatment, especially highly pressured (120 MPa), facilitated the penetration and rearrangement of proteins at the oil-water interface.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ziwei Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yanyun Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yu Ming
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
7
|
Zheng L, San Y, Xing Y, Regenstein JM. Rice proteins: A review of their extraction, modification techniques and applications. Int J Biol Macromol 2024; 268:131705. [PMID: 38643916 DOI: 10.1016/j.ijbiomac.2024.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Rice protein is highly nutritious and easy to digest and absorb. Its hydrolyzed peptides have significant effects on lowering blood pressure and cholesterol. First, a detailed and comprehensive explanation of rice protein extraction methods was given, and it was found that the combination of enzymatic and physical methods could improve the extraction rate of rice protein, but it was only suitable for laboratory studies. Second, the methods for improving the functional properties of rice protein were introduced, including physical modification, chemical modification, and enzymatic modification. Enzymatic modification of the solubility of rice protein to improve its functional properties has certain limitations due to the low degree of hydrolysis, the long time required, the low utilization of the enzyme, and the possible undesirable taste of the product. Finally, the development and utilization of rice protein was summarized and the future research direction was suggested. This paper lists the advantages and disadvantages of various extraction techniques, points out the shortcomings of existing extraction techniques, aims to fill the gap in the field of rice protein extraction, and then provides a possible improvement method for the extraction and development of rice protein in the future.
Collapse
Affiliation(s)
- Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Ltd., Harbin, Heilongjiang 150036, China.
| | - Yue San
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuejiao Xing
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| |
Collapse
|
8
|
Zhao R, Fu W, Li D, Dong C, Bao Z, Wang C. Structure and functionality of whey protein, pea protein, and mixed whey and pea proteins treated by pH shift or high-intensity ultrasound. J Dairy Sci 2024; 107:726-741. [PMID: 37777001 DOI: 10.3168/jds.2023-23742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Three modifications (pH shift, ultrasound, combined pH shift and ultrasound) induced alterations in pure whey protein isolate (WPI), pea protein isolate (PPI), and mixed whey and pea protein (WPI-PPI) were investigated. The processing effect was related to the protein type and technique used. Solubility of WPI remained unchanged by various treatments. Particle size was enlarged by pH shift while reduced by ultrasound and combined approach. All methods exposed more surface hydrophobic groups on WPI, while pH shift and joint processing was detrimental to its emulsifying activity. The PPI and mixture exhibited similar responses toward the modifications. Solubility of PPI and the blend enhanced in the sequence of pH shift and ultrasound > ultrasound > pH shift. Individual approach expanded while co-handling diminished the particle diameter. Treatments also caused more disclosure of hydrophobic regions in PPI and WPI-PPI and emulsifying activity was ameliorated in the order of pH shift and ultrasound > ultrasound > pH shift.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wenfei Fu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Dan Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhaoxue Bao
- Hinggan League Mengyuan Technology Testing Service Co. Ltd., Ulanhot 137400, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
Inducing the structural interplay of binary pulse protein complex to stimulate the solubilization of chickpea (Cicer arietinum L.) protein isolate. Food Chem 2023; 407:135136. [PMID: 36502729 DOI: 10.1016/j.foodchem.2022.135136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Chickpea protein (CP) is an exceptional nutrient-dense pulse protein prevailing in the development of plant-based foods. However, its relatively low solubility, compared to other legume proteins, hinders the practical uses of CP in food matrix. To resolve this problem, pea protein (PP), another popular pulse protein, was co-assembled with CP to form a binary complex during the alkaline pH-shifting process. Results indicated that the complexed CP exhibited significantly increased solubility to that of the pristine protein (more than 50%), whose aqueous stability was also enhanced against different environmental stresses (pH, salt, heat/frozen treatment, and centrifugation). Structural and morphology analysis confirmed the interplay between unfolded CP and PP during pH shifting, which enabled their resistance to acid-induced structural over-folding. Our experiments that induce the co-assembling of two pulse proteins provide a novel routine and scientific basis for tailoring CP functionalities, as well as the formulation of pulse protein-based products.
Collapse
|
10
|
Shen Q, Dai H, Wen L, Zheng W, Li B, Dai J, Li B, Chen Y. Effects of pH-shifting treatments on the emulsifying properties of rice protein isolates: Quantitative analysis of interfacial protein layer. Food Res Int 2023; 164:112306. [PMID: 36737901 DOI: 10.1016/j.foodres.2022.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
For the limitation of poor solubility and interfacial adsorption capacity of rice protein isolates (RPI), in this work the effects of pH-shifting treatments on the emulsifying properties of RPI were investigated. The results showed that the particle size of the emulsion stabilized by alkaline pH-shifting treated RPI was smaller than that stabilized by acid pH-shifting treated RPI. In addition, the RPI-10 stabilized emulsion showed a more uniform particle size distribution, which was explained by its high emulsifying activity and stability (EAI: 49.5 m2/g, ESI: 59.5 min). The interface rheology results showed that the alkaline pH-shifting treatment could promote the protein rearrangement and subsequently formed interface film with higher rate of protein penetration and rearrangement. The quantitative analysis of adsorbed proteins in the RPI-10 stabilized emulsion showed that glutelin-type isoforms as major proteins in RPI were increased at the oil-water interface for their balanced distribution of the hydrophilic and hydrophobic amino acid group. These quantitative and interfacial rheology analysis could improve deep understanding of the interfacial properties of pH-shifting treated RPI, and promote the development of application in grain protein stabilized emulsion.
Collapse
Affiliation(s)
- Qian Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Beixi Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
11
|
Huang Z, Ma L, Zhao Y, Chen H, Xu E. Future foods based on cereals and pulses: innovative technologies and products. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zehua Huang
- College of Food Science and Engineering Henan University of Technology 100 Lianhua Street Zhengzhou 450001 China
| | - Liang Ma
- School of Chemical Engineering & Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Yang Zhao
- College of Food Science and Technology Henan Agricultural University No. 95 Wenhua Road Zhengzhou Henan 450002 China
| | - Haihua Chen
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong 266109 China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science Zhejiang University 866 Yuhangtang Road Hangzhou Zhejiang 310058 China
| |
Collapse
|