1
|
Biswas SK, Mohanty KK, Singh V, Natrajan M, Arora M, Chakma JK, Tripathy SP. Association of CC-chemokine ligand-2 gene polymorphisms with leprosy reactions. Microbes Infect 2024; 26:105298. [PMID: 38244764 DOI: 10.1016/j.micinf.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND C-C motif chemokine ligand 2, a gene that codes for a protein involved in inflammation. Certain SNPs in the CCL2 gene have been studied for their potential associations with susceptibility to various diseases. These SNPs may affect the production and function of the CCL2 protein, which is involved in the recruitment of immune cells to the site of inflammation. Variations in CCL2 may influence the immune response to Mycobacterium leprae infection. OBJECTIVE To investigate the association of the C-C motif chemokine ligand-2 single nucleotide polymorphisms with leprosy. METHODS CCL2 single nucleotide polymorphisms were analyzed in a total of 975 leprosy patients and 357 healthy controls. Of those, 577 leprosy and 288 healthy controls were analyzed by PCR-RFLP for CCL2 -2518 A>G, 535 leprosy and 290 controls for CCL2 -362 G>C, 295 leprosy and 240 controls for CCL2 -2134 T>G, 325 leprosy and 288 controls for CCL2 -1549 A>T SNPs by melting curve analysis using hybridization probe chemistry and detection by fluorescence resonance energy transfer (FRET) technique in Realtime PCR. The levels of CCL2, IL-12p70, IFN-γ, TNF-α, and TGF-β were estimated in sera samples and correlated with CCL2 genotypes. RESULTS The frequency of the GCT (-2518 A>G, -362 G>C, -2134 T>G) haplotype is observed to be higher in leprosy patients compared to healthy controls (P = 0.04). There was no significant difference observed in genotypic frequencies between leprosy patients and healthy controls {(-2518A>G, p = 0.53), (-362 G>C, p = 0.01), (-2134 T>G, p = 0.10)}. G allele at the -2134 site is predominant in leprosy (borderline) without any reaction (8 %) compared to borderline patients with RR reactions (2.1 %) (P = 0.03). GG genotype (p = 0.008) and G allele at -2518 (p = 0.030) of the CCL 2 gene were found to be associated with patients with ENL reaction. An elevated level of serum CCL2 was observed in leprosy patients with the -2518 AA and AG genotypes (p = 0.0001). CONCLUSIONS G allele and GG genotype at the CCL2 -2518 site are associated with a risk of ENL reactions.
Collapse
Affiliation(s)
- Sanjay Kumar Biswas
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Keshar Kunja Mohanty
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Vandana Singh
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Mohan Natrajan
- Histopathology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Mamta Arora
- Clinical Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Joy Kumar Chakma
- Clinical Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| | - Srikanth Prasad Tripathy
- ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Agra, 282001, India.
| |
Collapse
|
2
|
Wujcicka WI, Zając A, Szyłło K, Romanowicz H, Smolarz B, Stachowiak G. Associations between Single Nucleotide Polymorphisms from the Genes of Chemokines and the CXCR2 Chemokine Receptor and an Increased Risk of Endometrial Cancer. Cancers (Basel) 2023; 15:5416. [PMID: 38001676 PMCID: PMC10670474 DOI: 10.3390/cancers15225416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Significant relationships with endometrial cancer were demonstrated, both for CCL2, CCL5, and CXCL8 chemokines and for the chemokine receptor CXCR2. The reported case-control study of genetic associations was designed to establish the role of selected single nucleotide polymorphisms (SNPs) of the CCL2, CCL5, CXCL8, and CXCR2 genes in the onset and progression of endometrial cancer. This study was conducted on 282 women, including 132 (46.8%) patients with endometrial cancer and 150 (53.2%) non-cancerous controls. The genotypes for CCL2 rs4586, CCL5 rs2107538 and rs2280789, CXCL8 rs2227532 and -738 T>A, and CXCR2 rs1126580 were determined, using PCR-RFLP assays. The AA homozygotes in CCL5 rs2107538 were associated with more than a quadruple risk of endometrial cancer (p ≤ 0.050). The GA heterozygotes in the CXCR2 SNP were associated with approximately threefold higher cancer risk (p ≤ 0.001). That association also remained significant after certain adjustments, carried out for age, diabetes mellitus, arterial hypertension, or endometrial thickness above 5 mm (p ≤ 0.050). The A-A haplotypes for the CCL5 polymorphisms and T-A-A haplotypes for the CCL2 and CCL5 SNPs were associated with about a twofold risk of endometrial cancer (p ≤ 0.050). In conclusion, CCL2 rs4586, CCL5 rs2107538 and rs2280789, and CXCR2 rs1126580 demonstrated significant associations with an increased risk of endometrial cancer.
Collapse
Affiliation(s)
- Wioletta Izabela Wujcicka
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
| | - Agnieszka Zając
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (A.Z.); (K.S.); (G.S.)
| | - Krzysztof Szyłło
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (A.Z.); (K.S.); (G.S.)
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland;
| | - Beata Smolarz
- Laboratory of Cancer Genetics of the Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland;
| | - Grzegorz Stachowiak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland; (A.Z.); (K.S.); (G.S.)
| |
Collapse
|
3
|
Risk assessment of latent tuberculosis infection through a multiplexed cytokine biosensor assay and machine learning feature selection. Sci Rep 2021; 11:20544. [PMID: 34654869 PMCID: PMC8520014 DOI: 10.1038/s41598-021-99754-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Accurate detection and risk stratification of latent tuberculosis infection (LTBI) remains a major clinical and public health problem. We hypothesize that multiparameter strategies that probe immune responses to Mycobacterium tuberculosis can provide new diagnostic insights into not only the status of LTBI infection, but also the risk of reactivation. After the initial proof-of-concept study, we developed a 13-plex immunoassay panel to profile cytokine release from peripheral blood mononuclear cells stimulated separately with Mtb-relevant and non-specific antigens to identify putative biomarker signatures. We sequentially enrolled 65 subjects with various risk of TB exposure, including 32 subjects with diagnosis of LTBI. Random Forest feature selection and statistical data reduction methods were applied to determine cytokine levels across different normalized stimulation conditions. Receiver Operator Characteristic (ROC) analysis for full and reduced feature sets revealed differences in biomarkers signatures for LTBI status and reactivation risk designations. The reduced set for increased risk included IP-10, IL-2, IFN-γ, TNF-α, IL-15, IL-17, CCL3, and CCL8 under varying normalized stimulation conditions. ROC curves determined predictive accuracies of > 80% for both LTBI diagnosis and increased risk designations. Our study findings suggest that a multiparameter diagnostic approach to detect normalized cytokine biomarker signatures might improve risk stratification in LTBI.
Collapse
|
4
|
Dos Santos ACM, Dos Santos BRC, Dos Santos BB, de Moura EL, Ferreira JM, Dos Santos LKC, Oliveira SP, Dias RBF, Pereira E Silva AC, de Farias KF, de Souza Figueiredo EVM. Genetic polymorphisms as multi-biomarkers in severe acute respiratory syndrome (SARS) by coronavirus infection: A systematic review of candidate gene association studies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104846. [PMID: 33933633 PMCID: PMC8084602 DOI: 10.1016/j.meegid.2021.104846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The Severe acute respiratory syndrome may be caused by coronavirus disease which has resulted in a global pandemic. Polymorphisms in the population play a role in susceptibility to severity. We aimed to perform a systematic review related to the effect of single nucleotide polymorphisms in the development of severe acute respiratory syndrome (SARS). Twenty-eight eligible articles published were identified in PubMed, ScienceDirect, Web of Science, PMC Central and Portal BVS and additional records, with 20 studies performed in China. Information on study characteristics, genetic polymorphisms, and comorbidities was extracted. Study quality was assessed by the STrengthening the REporting of Genetic Association (STREGA) guideline. Few studies investigated the presence of polymorphisms in HLA, ACE1, OAS-1, MxA, PKR, MBL, E-CR1, FcγRIIA, MBL2, L-SIGN (CLEC4M), IFNG, CD14, ICAM3, RANTES, IL-12 RB1, TNFA, CXCL10/IP-10, CD209 (DC-SIGN), AHSG, CYP4F3 and CCL2 with the susceptibility or protection to SARS-Cov. This review provides comprehensive evidence of the association between genetic polymorphisms and susceptibility or protection to severity SARS-CoV. The literature about coronavirus infection, susceptibility to severe acute respiratory syndrome (SARS) and genetic variations is scarce. Further studies are necessary to provide more concrete evidence, mainly related to Covid-19.
Collapse
Affiliation(s)
- Ana Caroline Melo Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Bárbara Rayssa Correia Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Bruna Brandão Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Jean Moisés Ferreira
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Luana Karen Correia Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Susana Paiva Oliveira
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Renise Bastos Farias Dias
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Aline Cristine Pereira E Silva
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Karol Fireman de Farias
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Elaine Virgínia Martins de Souza Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil..
| |
Collapse
|
5
|
Exploring the Role of C-C Motif Chemokine Ligand-2 Single Nucleotide Polymorphism in Pulmonary Tuberculosis: A Genetic Association Study from North India. J Immunol Res 2021; 2020:1019639. [PMID: 33381602 PMCID: PMC7759415 DOI: 10.1155/2020/1019639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/31/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
The C-C motif chemokine ligand-2 (CCL2) was evidenced to be associated with tuberculosis susceptibility in some ethnic groups. In the present study, effort was made to find out the association of CCL2-2518 A>G and -362 G>C variants with susceptibility to TB in a population from North India. The genotyping was carried out in 373 participants with pulmonary TB (PTB) and 248 healthy controls (HCs) for CCL2-2518 A>G and -362 G>C polymorphisms by PCR-RFLP and by melting curve analysis using fluorescence-labeled hybridization fluorescent resonance energy transfer (FRET) probes, respectively, followed by DNA sequencing in a few representative samples. Genotype and allele frequencies were compared by the chi-squared test and crude and Mantel-Haenszel (M-H) odds ratio (OR). OR was calculated using STATA/MP16.1 software. Further, CCL2, IL-12p70, IFN-γ, TNF-α, and TGF-β levels were measured in serum samples of these participants using commercially available kits. Our analysis indicated that the homozygous mutant in both -2518 GG (OR = 2.07, p = 0.02) and -362 CC (OR = 1.92, p = 0.03) genotypes was associated with susceptibility to pulmonary TB. Further, heterozygous genotypes -2518AG (OR = 0.60, p = 0.003) and -362GC (OR = 0.64, p = 0.013) provide resistance from PTB disease. Haplotype analysis revealed AC haplotype (p = 0.006) to be a risk factor associated with PTB susceptibility. The serum CCL2 level was significantly elevated among participants with -2518 AA genotype compared to -2518 GG genotype. CCL2 level was observed to be positively correlated with IL12p70, IFN-γ and TNF-α, thus suggesting the immunological regulatory role of CCL2 against pulmonary tuberculosis. CCL2-2518 GG and -362 CC genotypes were found to be associated with susceptibility to pulmonary tuberculosis and CCL2-2518AG and CCL2-362GC with resistance from PTB. AC haplotype was found to be a risk factor for PTB in the present study. It may be hypothesized from the findings that -2518G allele could be responsible for lower production of CCL2 which leads to defective Th1 response and makes a host susceptible for pulmonary tuberculosis.
Collapse
|
6
|
Zhang JX, Gong WP, Zhu DL, An HR, Yang YR, Liang Y, Wang J, Tang J, Zhao WG, Wu XQ. Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population. Infect Dis Poverty 2020; 9:46. [PMID: 32349793 PMCID: PMC7191747 DOI: 10.1186/s40249-020-00664-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Immune- and inflammation-related genes (IIRGs) play an important role in the pathogenesis of tuberculosis (TB). However, the relationship between IIRG polymorphisms and TB risk remains unknown. In this study, the gene polymorphisms and their association with tuberculosis were determined in a Chinese population. METHODS We performed a case-control study involving 1016 patients with TB and 507 healthy controls of Han Chinese origin. Sixty-four single-nucleotide polymorphisms (SNPs) belonging to 18 IIRGs were genotyped by the PCR-MassArray assay, and the obtained data was analyzed with χ2-test, Bonferroni correction, and unconditional logistic regression analysis. RESULTS We observed significant differences in the allele frequency of LTA rs2229094*C (P = 0.015), MBL2 rs2099902*C (P = 0.001), MBL2 rs930507*G (P = 0.004), MBL2 rs10824793*G (P = 0.004), and IL12RB1 rs2305740*G (P = 0.040) between the TB and healthy groups. Increased TB risk was identified in the rs930507 G/G genotype (Padjusted = 0.027) under a codominant genetic model as well as in the rs2099902 (C/T + C/C) vs T/T genotype (Padjusted = 0.020), rs930507 (C/G + G/G) vs C/C genotype (Padjusted = 0.027), and rs10824793 (G/A + G/G) vs A/A genotype (Padjusted = 0.017) under a dominant genetic model after Bonferroni correction in the analysis of the overall TB group rather than the TB subgroups. Furthermore, the rs10824793_rs7916582*GT and rs10824793_rs7916582*GC haplotypes were significantly associated with increased TB risk (P = 0.001, odds ratio [OR] = 1.421, 95% confidence interval [CI]: 1.152-1.753; and P = 0.018, OR = 1.364, 95% CI: 1.055-1.765, respectively). Moreover, the rs10824793_rs7916582*AT/AT or rs10824793_rs7916582*GT/GT diplotype showed a protective (P = 0.003, OR = 0.530, 95% CI: 0.349-0.805) or harmful (P = 0.009, OR = 1.396, 95% CI: 1.087-1.793) effect against the development of TB. CONCLUSIONS This study indicated that MBL2 polymorphisms, haplotypes, and diplotypes were associated with TB susceptibility in the Han Chinese population. Additionally, larger sample size studies are needed to further confirm these findings in the future.
Collapse
Affiliation(s)
- Jun-Xian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China.,Laboratory of Animal Experiment, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Wen-Ping Gong
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Dong-Lin Zhu
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Hui-Ru An
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - You-Rong Yang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Jie Wang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Jing Tang
- Physical Examination Center, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Wei-Guo Zhao
- Department of Respiration, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Xue-Qiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, 17# Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
7
|
Gentiluomo M, Peduzzi G, Lu Y, Campa D, Canzian F. Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: a two-phase study on more than 14 000 individuals. Mutagenesis 2019; 34:395-401. [PMID: 31748817 DOI: 10.1093/mutage/gez040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2023] Open
Abstract
There is overwhelming evidence that inflammation plays a key role in the pathogenesis of cancer and its progression. Inflammation is regulated through a complex network of genes and polymorphic variants in these genes have been found to be associated to risk of various human cancers, alone or in combination with environmental variables. Despite this, not much is known on the genetic variability of genes that regulate inflammation and risk of pancreatic ductal adenocarcinoma (PDAC). We performed a two-phase association study considering the genetic variability of 76 genes that are key players in inflammatory response. We analysed tagging single nucleotide polymorphisms (SNPs) and regulatory SNPs on 7207 PDAC cases and 7063 controls and observed several associations with PDAC risk. The most significant association was between the carriers of the A allele of the CCL4-rs1719217 polymorphism, which was reported to be also associated with the expression level of the CCL4 gene, and increased risk of developing PDAC (odds ratio = 1.12, 95% confidence interval = 1.06-1.18, P = 3.34 × 10-5). This association was significant also after correction for multiple testing, highlighting the importance of using potentially functional SNPs in order to discover more genetic variants associated with PDAC risk.
Collapse
Affiliation(s)
| | | | - Ye Lu
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Xu Z, Li J, Yang H, Jiang L, Zhou X, Huang Y, Xu N. Association of CCL2 Gene Variants with Osteoarthritis. Arch Med Res 2019; 50:86-90. [PMID: 31495394 DOI: 10.1016/j.arcmed.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The chemokine (C-C motif) Ligand 2 (CCL2)/CCR2 signaling was associated with macrophage accumulation, synovitis and cartilage damage in a mouse osteoarthritis (OA) model. MATERIALS AND METHODS Here a case-control study in a Chinese Han population was conducted to investigate the possible association between the CCL2 gene polymorphism and risk of OA. DNA was extracted from 367 primary knee OA patients and 303 healthy controls. Then CCL2 gene polymorphisms were determined using a standard polymerase chain reaction restriction fragment length polymorphism. Plasma CCL2 levels were measured by using sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS It was found the CCL2 gene rs1024611 and rs4586 polymorphisms significantly increased the risk of OA. Stratified analyses showed the risk of OA might be increased by rs1024611 polymorphism in males and non-drinkers, and was increased by rs4586 polymorphism among smokers and drinkers. The CC genotype of rs4586 polymorphism was significantly correlated with the increased CCL2 level compared to TT genotype. CONCLUSIONS In conclusion, CCL2 gene polymorphisms (rs1024611 and rs4586) confer susceptibility to OA and may be potential markers for early diagnosis of OA.
Collapse
Affiliation(s)
- Zhonghua Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China; Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu Univeristy, Changzhou, China
| | - Jin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Haoyu Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Nanwei Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
9
|
Varzari A, Tudor E, Bodrug N, Corloteanu A, Axentii E, Deyneko IV. Age-Specific Association ofCCL5Gene Polymorphism with Pulmonary Tuberculosis: A Case–Control Study. Genet Test Mol Biomarkers 2018; 22:281-287. [DOI: 10.1089/gtmb.2017.0250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alexander Varzari
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Elena Tudor
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Nina Bodrug
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Andrei Corloteanu
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Ecaterina Axentii
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Republic of Moldova
| | - Igor V. Deyneko
- Institute of Microbiology and Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Functional polymorphisms of Monocyte Chemoattractant Protein-1 gene and Pott’s disease risk. Immunobiology 2016; 221:462-7. [DOI: 10.1016/j.imbio.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 02/01/2023]
|
11
|
Patarčić I, Gelemanović A, Kirin M, Kolčić I, Theodoratou E, Baillie KJ, de Jong MD, Rudan I, Campbell H, Polašek O. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci Rep 2015; 5:16119. [PMID: 26524966 PMCID: PMC4630784 DOI: 10.1038/srep16119] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
Host genetic factors have frequently been implicated in respiratory infectious diseases, often with inconsistent results in replication studies. We identified 386 studies from the total of 24,823 studies identified in a systematic search of four bibliographic databases. We performed meta-analyses of studies on tuberculosis, influenza, respiratory syncytial virus, SARS-Coronavirus and pneumonia. One single-nucleotide polymorphism from IL4 gene was significant for pooled respiratory infections (rs2070874; 1.66 [1.29–2.14]). We also detected an association of TLR2 gene with tuberculosis (rs5743708; 3.19 [2.03–5.02]). Subset analyses identified CCL2 as an additional risk factor for tuberculosis (rs1024611; OR = 0.79 [0.72–0.88]). The IL4-TLR2-CCL2 axis could be a highly interesting target for translation towards clinical use. However, this conclusion is based on low credibility of evidence - almost 95% of all identified studies had strong risk of bias or confounding. Future studies must build upon larger-scale collaborations, but also strictly adhere to the highest evidence-based principles in study design, in order to reduce research waste and provide clinically translatable evidence.
Collapse
Affiliation(s)
- Inga Patarčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Mirna Kirin
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Kenneth J Baillie
- Roslin Institute, University of Edinburgh, Midlothian, UK.,Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, Split, Croatia.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Aggarwal S, Phadke SR. Medical genetics and genomic medicine in India: current status and opportunities ahead. Mol Genet Genomic Med 2015; 3:160-71. [PMID: 26029702 PMCID: PMC4444157 DOI: 10.1002/mgg3.150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences Hyderabad, India ; Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics Hyderabad, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, India
| |
Collapse
|