1
|
Hammer SE, Duckova T, Gociman M, Groiss S, Pernold CPS, Hacker K, Kasper L, Sprung J, Stadler M, Jensen AE, Saalmüller A, Wenzel N, Figueiredo C. Comparative analysis of swine leukocyte antigen gene diversity in Göttingen Minipigs. Front Immunol 2024; 15:1360022. [PMID: 38469309 PMCID: PMC10925748 DOI: 10.3389/fimmu.2024.1360022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Worldwide, pigs represent economically important farm animals, also representing a preferred preclinical large animal model for biomedical studies. The need for swine leukocyte antigen (SLA) typing is increasing with the expanded use of pigs in translational research, infection studies, and for veterinary vaccine design. Göttingen Minipigs (GMP) attract increasing attention as valuable model for pharmacological studies and transplantation research. This study represents a first-time assessment of the SLA gene diversity in Göttingen Minipigs in combination with a comparative metadata analysis with commercial pig lines. As Göttingen Minipigs could harbor private as well as potential novel SLA allele combinations, future research projects would benefit from the characterization of their SLA background. In 209 Göttingen Minipigs, SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes were characterized by PCR-based low-resolution (Lr) haplotyping. Criteria and nomenclature used for SLA haplotyping were proposed by the ISAG/IUIS-VIC SLA Nomenclature Committee. Haplotypes were assigned based on the comparison with already known breed or farm-specific allele group combinations. In total, 14 SLA class I and five SLA class II haplotypes were identified in the studied cohort, to manifest in 26 SLA class I but only seven SLA class II genotypes. The most common SLA class I haplotypes Lr-24.0 (SLA-1*15XX or Blank-SLA-3*04:04-SLA-2*06:01~02) and Lr-GMP-3.0 (SLA-1*16:02-SLA-3*03:04-SLA-2*17:01) occurred at frequencies of 23.44 and 18.66%, respectively. For SLA class II, the most prevalent haplotypes Lr-0.21 (DRB1*01XX-DQB1*05XX-DQA*04XX) and Lr-0.03 (DRB1*03:02-DQB1*03:01-DQA*01XX) occurred at frequencies of 38.28 and 30.38%. The comparative metadata analysis revealed that Göttingen Minipigs only share six SLA class I and two SLA class II haplotypes with commercial pig lines. More importantly, despite the limited number of SLA class I haplotypes, the high genotype diversity being observed necessitates pre-experimental SLA background assessment of Göttingen Minipigs in regenerative medicine, allo-transplantation, and xenograft research.
Collapse
Affiliation(s)
- Sabine E. Hammer
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tereza Duckova
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monica Gociman
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sandra Groiss
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Clara P. S. Pernold
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karolin Hacker
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | | | - Julia Sprung
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Armin Saalmüller
- Department of Pathobiology, Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadine Wenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Garry DJ, Weiner JI, Greising SM, Garry MG, Sachs DH. Mechanisms and strategies to promote cardiac xenotransplantation. J Mol Cell Cardiol 2022; 172:109-119. [PMID: 36030840 DOI: 10.1016/j.yjmcc.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
End stage heart failure is a terminal disease, and the only curative therapy is orthotopic heart transplantation. Due to limited organ availability, alternative strategies have received intense interest for treatment of patients with advanced heart failure. Recent studies using gene-edited porcine organs suggest that cardiac xenotransplantation may provide a future source of organs. In this review, we highlight the historical milestones for cardiac xenotransplantation and the gene editing strategies designed to overcome immunological barriers, which have culminated in a recent cardiac pig-to-human xenotransplant. We also discuss recent results of studies on the engineering of human-porcine chimeric organs that may provide an alternative and complementary strategy to overcome some of the major immunological barriers to producing a new source of transplantable organs.
Collapse
Affiliation(s)
- Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, United States of America; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; NorthStar Genomics, Eagan, MN, United States of America.
| | - Joshua I Weiner
- Departments of Surgery, Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, United States of America; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, United States of America; NorthStar Genomics, Eagan, MN, United States of America
| | - David H Sachs
- Departments of Surgery, Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America; Department of Surgery, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
3
|
Ando A, Matsubara T, Suzuki S, Imaeda N, Takasu M, Shigenari A, Miyamoto A, Ohshima S, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Association between Farrowing Rates and Swine Leukocyte Antigen Alleles or Haplotypes in Microminipigs. Cells 2022; 11:3138. [PMID: 36231100 PMCID: PMC9563624 DOI: 10.3390/cells11193138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously reported specific swine leukocyte antigen (SLA) haplotype associations with significant effects on several reproduction performance traits in a highly inbred miniature pig population of Microminipigs (MMPs). In this study, to clarify the effects on farrowing rates of SLA similarity between mating partners in the MMP population, we compared the farrowing rates as a measure of reproductive success after 1063-cumulative matings among the following three groups of mating partners: (1) completely sharing SLA class I or class II haplotypes or alleles between partners (CS), (2) only one sharing the haplotypes or alleles (OS), and (3) non-sharing the haplotypes or alleles (NS). Average farrowing rates in CS groups consisting of completely sharing SLA class II haplotypes or DRBI and DQB1 alleles were lowest in the three groups. Moreover, lower farrowing rates were indicated in mating pairs with smaller amino acid pairwise genetic distances of SLA-1, SLA-3, DRB1 and DQB1 alleles between the pairs. These results suggested that the dissimilarity of SLA class I and class II alleles between mating partners markedly improved reproductive performance; therefore, SLA alleles or haplotypes are potentially useful genetic markers for the selection of mating pairs in breeding programs and epistatic studies of reproductive traits of MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| |
Collapse
|
4
|
Oripov F, Ramm R, Falk C, Goecke T, Ebken J, Jashari R, Böthig D, Horke A, Avsar M, Bobylev D, Haverich A, Hilfiker A, Sarikouch S. Serial assessment of early antibody binding to decellularized valved allografts. Front Cardiovasc Med 2022; 9:895943. [PMID: 36017105 PMCID: PMC9395941 DOI: 10.3389/fcvm.2022.895943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesDecellularized homograft valves (DHV) appear to elicit an immune response despite efficient donor cell removal.Materials and methodsA semiquantitative Dot-Blot analysis for preformed and new recipient antibodies was carried out in 20 patients following DHV implantation on days 0, 1, 7, and 28 using secondary antihuman antibodies. Immune reactions were tested against the implanted DHV as well as against the stored samples of 5 non-implanted decellularized aortic (DAH) and 6 pulmonary homografts (DPH).ResultsIn this study, 20 patients (3 female and 17 male patients) were prospectively included, with a median age of 18 years and an IQR of 12–30 years. Six patients received DPH and 14 received DAH. The amount of antibody binding, averaged for all patients, decreased on post-operative days 1 and 7 compared to pre-operative values; and on day 28, antibody binding reached close to pre-operative levels (16.8 ± 2.5 on day 0, 3.7 ± 1.9 on day 1, 2.3 ± 2.7 on day 7, and 13.2 ± 3.7 on day 28). In comparison with the results in healthy controls, there was a higher amount of antibody binding to DAH than to DPH. The mean number of arbitrary units was 18.4 ± 3.1 in aortic and 12.9 ± 4.5 in pulmonary DHV (p = 0.140). Male patients exhibited higher antibody binding to aortic DHV than female patients (19.5 ± 2.1 vs. 1.6 ± 6.7). The p-value calculation was limited, as only two female patients received DAH. There was no correlation between the amount of overall antibody binding to DHV with respect to donor age (Kruskal–Wallis test p = 0.550). DHV recipients with a sex mismatch to the donor showed significantly less antibody binding (6.5 ± 1.8 vs. 13.7 ± 1.8; p = 0.003). Our main finding was an increase in antibody binding in younger patients receiving decellularized aortic allografts. This increase was higher in patients with early degeneration signs but was not specific to the individual DHV implanted nor previous DHV implantation. Antibody binding toward explanted DHV was significantly increased in implicating antibody-mediated DHV degeneration.ConclusionSerial assessment of tissue-specific antibody binding revealed an increase in some patients within 4 weeks after surgery, who subsequently developed early signs of allograft degeneration. Further studies with larger sample sizes are needed to confirm the prognostic relevance of increased antibody activity in addition to targeted research efforts to identify the molecular agents triggering this type of antibody response.
Collapse
Affiliation(s)
- Firdavs Oripov
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hanover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hanover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hanover, Germany
| | - Tobias Goecke
- Institute of Transplant Immunology, Hannover Medical School, Hanover, Germany
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Johannes Ebken
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hanover, Germany
| | - Ramadan Jashari
- European Homograft Bank, Clinique Saint-Jean, Brussels, Belgium
| | - Dietmar Böthig
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Alexander Horke
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Murat Avsar
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Dmitry Bobylev
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hanover, Germany
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hanover, Germany
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Samir Sarikouch
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
- *Correspondence: Samir Sarikouch,
| |
Collapse
|
5
|
Huang J. Expert consensus on clinical trials of human xenotransplantation in China. HEALTH CARE SCIENCE 2022; 1:7-10. [PMID: 38939355 PMCID: PMC11080631 DOI: 10.1002/hcs2.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 06/29/2024]
Abstract
The history of xenotransplantation started in the 19th century. After a few decades of investigation, significant breakthroughs and preclinical milestones have been achieved worldwide. With the recent transplantation of genetically modified porcine kidneys and heart into humans, these ground-breaking achievements have attracted great attention worldwide, in the hope that xenotransplantation might alleviate or even solve the problem of organ shortage. On January 20, 2022, the China Organ Transplantation Development Foundation convened a symposium on "The History, Current Situation and Future of Human Xenotransplantation Clinical Trials," where ways to promote the ethical and sustainable development of xenotransplantation in China were discussed among the participating experts. A formal consensus was reached as the product of the symposium, outlining the expert opinions on scientific, regulatory, and ethical issues of clinical trials of xenotransplantation in China.
Collapse
Affiliation(s)
- Jiefu Huang
- China Organ Transplantation Development FoundationBeijingChina
| | | |
Collapse
|
6
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
7
|
Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2022; 251:110461. [PMID: 35870231 DOI: 10.1016/j.vetimm.2022.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
One of the most used biospecimens in immunology are peripheral blood mononuclear cells (PBMC). PBMC are particularly useful when evaluating immunity through responses of circulating B- and T-cells, during an infection, or after a vaccination. While several reviews and research papers have been published aiming to point out critical steps when sampling, isolating, and cryopreserving human PBMC -or even analyzing any parameter before sampling that could impair the immune assays' outcomes-, there are almost no publications in swine research dealing with these topics. As it has been demonstrated, several factors, such as stress, circadian rhythmicity, or the anticoagulant used have serious negative impact, not only on the separation performance of PBMC, but also on the ulterior immune assays. The present review aims to discuss studies carried out in humans that could shed some light for swine research. When possible, publications in pigs are also discussed. The main goal of the review is to encourage swine researchers to standardize protocols to obtain, manage and preserve porcine PBMC, as well as to minimize, or at least to consider, the bias that some parameters might induce in their studies before, during and after isolating PBMC.
Collapse
|
8
|
Costanzo MR, O'Connor CM, Ventura HO. Advanced Heart Failure: Progress and Disappointments. JACC. HEART FAILURE 2021; 9:938-940. [PMID: 34857178 DOI: 10.1016/j.jchf.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
9
|
Huang CP, Yang CY, Shyr CR. Utilizing Xenogeneic Cells As a Therapeutic Agent for Treating Diseases. Cell Transplant 2021; 30:9636897211011995. [PMID: 33975464 PMCID: PMC8120531 DOI: 10.1177/09636897211011995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
The utilization of biologically produced cells to treat diseases is a revolutionary invention in modern medicine after chemically synthesized small molecule drugs and biochemically made protein drugs. Cells are basic units of life with diverse functions in mature and developing organs, which biological properties could be utilized as a promising therapeutic approach for currently intractable and incurable diseases. Xenogeneic cell therapy utilizing animal cells other than human for medicinal purpose has been studied as a new way of treating diseases. Xenogeneic cell therapy is considered as a potential regenerative approach to fulfill current unmet medical needs because xenogeneic cells could be isolated from different animal organs and expanded ex vivo as well as maintain the characteristics of original organs, providing a versatile and plenty cell source for cell-based therapeutics beside autologous and allogeneic sources. The swine species is considered the most suitable source because of the similarity with humans in size and physiology of many organs in addition to the economic and ethical reasons plus the possibility of genetic modification. This review discusses the old proposed uses of xenogeneic cells such as xenogeneic pancreatic islet cells, hepatocytes and neuronal cells as a living drug for the treatment of degenerative and organ failure diseases. Novel applications of xenogeneic mesenchymal stroma cells and urothelial cells are also discussed. There are formidable immunological barriers toward successful cellular xenotransplantation in clinic despite major progress in the development of novel immunosuppression regimens and genetically multimodified donor pigs. However, immunological barriers could be turn into immune boosters by using xenogeneic cells of specific tissue types as a novel immunotherapeutic agent to elicit bystander antitumor immunity due to rejection immune responses. Xenogeneic cells have the potential to become a safe and efficacious option for intractable diseases and hard-to-treat cancers, adding a new class of cellular medicine in our drug armamentarium.
Collapse
Affiliation(s)
- Chi-Ping Huang
- Department of Urology, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Yu Yang
- Animal Technology Research Center/Division of Animal Technology, Agriculture Technology Research Institute, Miaoli, Taiwan
| | - Chih-Rong Shyr
- Sex Hormone Research Center, Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|