1
|
Mlakar V, Dupanloup I, Gloor Y, Ansari M. Haplotype Inference Using Long-Read Nanopore Sequencing: Application to GSTA1 Promoter. Mol Biotechnol 2024:10.1007/s12033-024-01213-7. [PMID: 38886308 DOI: 10.1007/s12033-024-01213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Recovering true haplotypes can have important clinical consequences. The laboratory process is difficult and is, therefore, most often done through inference. In this paper, we show that when using the Oxford nanopore sequencing technology, we could recover the true haplotypes of the GSTA1 promoter region. Eight LCL cell lines with potentially ambiguous haplotypes were used to characterize the efficacy of Oxford nanopore sequencing to phase the correct GSTA1 promoter haplotypes. The results were compared to Sanger sequencing and inferred haplotypes in the 1000 genomes project. The average read length was 813 bp out of a total PCR length of 1336 bp. The best coverage of sequencing was in the middle of the PCR product and decreased to 50% at the PCR ends. SNPs separated by less than 200 bp showed > 90% of correct haplotypes, while at the distance of 1089 bp, this proportion still exceeded 58%. The number of cycles influences the generation of hybrid haplotypes but not extension or annealing time. The results demonstrate that this long sequencing reads methodology, can accurately determine the haplotypes without the need for inference. The technology proved to be robust but the success of phasing nonetheless depends on the distances and frequencies of SNPs.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Rue Michel Servet 1, 1211, Geneva, Switzerland.
| | - Isabelle Dupanloup
- CANSEARCH Research Laboratory, Geneva University Medical School, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yvonne Gloor
- CANSEARCH Research Laboratory, Geneva University Medical School, Rue Michel Servet 1, 1211, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Onco-Hematology Unit, Pediatric Department, Geneva University Hospital, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| |
Collapse
|
2
|
Shiina T, Kulski JK. HLA Genetics for the Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:237-258. [PMID: 38467984 DOI: 10.1007/978-981-99-9781-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.
Collapse
Affiliation(s)
| | - Jerzy K Kulski
- Tokai University School of Medicine, Isehara, Japan
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Kulski JK, Pfaff AL, Marney LD, Fröhlich A, Bubb VJ, Quinn JP, Koks S. Regulation of expression quantitative trait loci by SVA retrotransposons within the major histocompatibility complex. Exp Biol Med (Maywood) 2023; 248:2304-2318. [PMID: 38031415 PMCID: PMC10903234 DOI: 10.1177/15353702231209411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic and transcriptomic studies of expression quantitative trait loci (eQTL) revealed that SINE-VNTR-Alu (SVA) retrotransposon insertion polymorphisms (RIPs) within human genomes markedly affect the co-expression of many coding and noncoding genes by coordinated regulatory processes. This study examined the polymorphic SVA modulation of gene co-expression within the major histocompatibility complex (MHC) genomic region where more than 160 coding genes are involved in innate and adaptive immunity. We characterized the modulation of SVA RIPs utilizing the genomic and transcriptomic sequencing data obtained from whole blood of 1266 individuals in the Parkinson's Progression Markers Initiative (PPMI) cohort that included an analysis of human leukocyte antigen (HLA)-A regulation in a subpopulation of the cohort. The regulatory properties of eight SVAs located within the class I and class II MHC regions were associated with differential co-expression of 71 different genes within and 75 genes outside the MHC region. Some of the same genes were affected by two or more different SVA. Five SVA are annotated in the human genomic reference sequence GRCh38.p14/hg38, whereas the other three were novel insertions within individuals. We also examined and found distinct structural effects (long and short variants and the CT internal variants) for one of the SVA (R_SVA_24) insertions on the differential expression of the HLA-A gene within a subpopulation (550 individuals) of the PPMI cohort. This is the first time that many HLA and non-HLA genes (multilocus expression units) and splicing mechanisms have been shown to be regulated by eight structurally polymorphic SVA within the MHC genomic region by applying precise statistical analysis of RNA data derived from the blood samples of a human cohort population. This study shows that SVA within the MHC region are important regulators or rheostats of gene co-expression that might have potential roles in diversity, health, and disease.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Department of Molecular Life Sciences, School of Medicine, Tokai University, Isehara, Kanagawa 259–1193, Japan
- Health and Medical Science. Division of Immunology and Microbiology, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Luke D Marney
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Alexander Fröhlich
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
4
|
Kulski JK, Suzuki S, Shiina T. Human leukocyte antigen super-locus: nexus of genomic supergenes, SNPs, indels, transcripts, and haplotypes. Hum Genome Var 2022; 9:49. [PMID: 36543786 PMCID: PMC9772353 DOI: 10.1038/s41439-022-00226-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
The human Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) super-locus is a highly polymorphic genomic region that encodes more than 140 coding genes including the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. In recent years, MHC genotyping and haplotyping using Sanger sequencing and next-generation sequencing (NGS) methods have produced many hundreds of genomic sequences of the HLA super-locus for comparative studies of the genetic architecture and diversity between the same and different haplotypes. In this special issue on 'The Current Landscape of HLA Genomics and Genetics', we provide a short review of some of the recent analytical developments used to investigate the SNP polymorphisms, structural variants (indels), transcription and haplotypes of the HLA super-locus. This review highlights the importance of using reference cell-lines, population studies, and NGS methods to improve and update our understanding of the mechanisms, architectural structures and combinations of human MHC genomic alleles (SNPs and indels) that better define and characterise haplotypes and their association with various phenotypes and diseases.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
5
|
Osman A, Jonasson J. Cross-ethnic analysis of common gene variants in hemostasis show lopsided representation of global populations in genetic databases. BMC Med Genomics 2022; 15:69. [PMID: 35337356 PMCID: PMC8957123 DOI: 10.1186/s12920-022-01220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
A majority of studies reporting human genetic variants were performed in populations of European ancestry whereas other global populations, and particularly many ethnolinguistic groups in other continents, are heavily underrepresented in these studies. To investigate the extent of this disproportionate representation of global populations concerning variants of significance to thrombosis and hemostasis, 845 single nucleotide polymorphisms (SNPs) in and around 34 genes associated with thrombosis and hemostasis and included in the commercial Axiom Precision Medicine Research Array (PMRA) were evaluated, using gene frequencies in 3 African (Somali and Luhya in East Africa, and Yoruba in West Africa) and 14 non-African (admixed American, East Asian, European, South Asian, and sub-groups) populations. Among the populations studied, Europeans were observed to be the best represented population by the hemostatic SNPs included in the PMRA. The European population also presented the largest number of common pharmacogenetic and pathogenic hemostatic variants reported in the ClinVar database. The number of such variants decreased the farther the genetic distance a population was from Europeans, with Yoruba and East Asians presenting the least number of clinically significant hemostatic SNPs in ClinVar while also being the two genetically most distinct populations from Europeans among the populations compared. Current study shows the lopsided representation of global populations as regards to hemostatic genetic variants listed in different commercial SNP arrays, such as the PMRA, and reported in genetic databases while also underlining the importance of inclusion of non-European ethnolinguistic populations in genomics studies designed to discover variants of significance to bleeding and thrombotic disorders.
Collapse
Affiliation(s)
- Abdimajid Osman
- Department of Clinical Chemistry, University Hospital in Linköping, Ing. 64, Plan 11, 581 85, Linköping, Sweden. .,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Jon Jonasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Genetics, University Hospital in Linköping, Linköping, Sweden
| |
Collapse
|