1
|
Misir S, Ozer Yaman S, Petrović N, Šami A, Akidan O, Hepokur C, Aliyazicioglu Y. Identification of a Novel hsa_circ_0058058/miR-324-5p Axis and Prognostic/Predictive Molecules for Acute Myeloid Leukemia Outcome by Bioinformatics-Based Analysis. BIOLOGY 2024; 13:487. [PMID: 39056681 PMCID: PMC11273384 DOI: 10.3390/biology13070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Acute myeloid leukemia (LAML) is one of the most prevalent hematological malignancies. In recent years, while targeted approaches have shown promise in the fight against cancer, the treatability and prognosis of patients remain inadequate due to the shortage of drugs. Noncoding RNAs, especially circular RNA (circRNA) and microRNA (miRNA), have been shown to play a unique role in tumor development. This study aims to identify the disease-associated circRNA-miRNA-mRNA network by bioinformatic analysis and investigate the mechanisms in the development and progression of LAML. Additionally, it reveals the promising roles of these molecules as a diagnostic biomarker and therapeutic target for LAML treatment. Using various bioinformatics approaches, we identified the hsa_circ_0058058/miR-324-5p axis in LAML and its possible functions in LAML development. According to our results, hsa circ-0058058 can regulate the expression of AP1G1 and SP1 through miR-324-5p to support angiogenesis, the cell cycle, and DNA replication processes. Downregulation of hsa circ-0058058 may contribute to the anticancer functions of miR-324-5p on LAML tumorigenesis, and upregulation of miR-324-5p can abolish the oncogenic effects of AP1G1 and SP1 on LAML tumorigenesis. Additionally, highly enriched pathways indicated possible interactions between molecules underlying LAML pathology. Targeted molecules within this network may be able to function as therapeutic and diagnostic biomarkers for disease, while more research and clinical confirmation are needed.
Collapse
Affiliation(s)
- Sema Misir
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; (S.O.Y.); (Y.A.)
- Department of Medical Biochemistry, Trabzon Faculty of Medicine, University of Health Sciences, 61080 Trabzon, Turkey
| | - Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11351 Belgrade, Serbia
| | - Ahmad Šami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Osman Akidan
- Department of Hematology, Mengücek Gazi Education and Research Hospital, 24100 Erzincan, Turkey;
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; (S.O.Y.); (Y.A.)
| |
Collapse
|
2
|
Allegrini S, Camici M, Garcia-Gil M, Pesi R, Tozzi MG. Interplay between mTOR and Purine Metabolism Enzymes and Its Relevant Role in Cancer. Int J Mol Sci 2024; 25:6735. [PMID: 38928439 PMCID: PMC11203890 DOI: 10.3390/ijms25126735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor cells reprogram their metabolism to meet the increased demand for nucleotides and other molecules necessary for growth and proliferation. In fact, cancer cells are characterized by an increased "de novo" synthesis of purine nucleotides. Therefore, it is not surprising that specific enzymes of purine metabolism are the targets of drugs as antineoplastic agents, and a better knowledge of the mechanisms underlying their regulation would be of great help in finding new therapeutic approaches. The mammalian target of the rapamycin (mTOR) signaling pathway, which is often activated in cancer cells, promotes anabolic processes and is a major regulator of cell growth and division. Among the numerous effects exerted by mTOR, noteworthy is its empowerment of the "de novo" synthesis of nucleotides, accomplished by supporting the formation of purinosomes, and by increasing the availability of necessary precursors, such as one-carbon formyl group, bicarbonate and 5-phosphoribosyl-1-pyrophosphate. In this review, we highlight the connection between purine and mitochondrial metabolism, and the bidirectional relation between mTOR signaling and purine synthesis pathways.
Collapse
Affiliation(s)
- Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
- Centro di Ricerca Interdipartimentale Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione Della Strumentazione Dell’Università di Pisa, 56127 Pisa, Italy
| | - Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
| | - Mercedes Garcia-Gil
- Centro di Ricerca Interdipartimentale Nutrafood “Nutraceuticals and Food for Health”, Università di Pisa, 56126 Pisa, Italy;
- CISUP, Centro per l’Integrazione Della Strumentazione Dell’Università di Pisa, 56127 Pisa, Italy
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy; (M.C.); (R.P.); (M.G.T.)
| |
Collapse
|
3
|
Luo HL, Lee YC, Chang YL, Hsu WC, Wu YT, Jhan JH, Lin HH, Wu YR, Ke HL, Liu HY. MicroRNA-145-5p suppresses cell proliferation, migration, and invasion in upper tract urothelial carcinoma by targeting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. J Cell Biochem 2023; 124:1324-1345. [PMID: 37475541 DOI: 10.1002/jcb.30449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Upper tract urothelial carcinoma (UTUC), including renal, pelvic, and ureteral carcinoma, has a high incidence rate in Taiwan, which is different from that in Western countries. Therefore, it is imperative to elucidate the mechanisms underlying UTUC growth and metastasis. To explore the function of miR-145-5p in UTUC, we transfected the BFTC909 cell line with miR-145-5p mimics and analyzed the differences in protein levels by performing two-dimensional polyacrylamide gel electrophoresis. Real-time polymerase chain reaction and Western blot analysis were used to analyze 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inositol monophosphate cyclohydrolase (ATIC) messenger RNA and protein levels. A dual-luciferase assay was performed to identify the target of miR-145-5p in ATIC. The effects of miR-145-5p and ATIC expression by cell transfection on cell proliferation, migration, and invasion were also assessed. miR-145-5p downregulated ATIC protein expression. High ATIC expression is associated with tumor stage, metastasis, recurrence, and a poor prognosis in patients with UTUC. Cell function assays revealed that ATIC knockdown inhibited the proliferation, migration, and invasive abilities of UTUC cells. In contrast, miR-145-5p affected the proliferation, migration, and invasive abilities of UTUC cells by directly targeting the 3'-untranslated regions of ATIC. Furthermore, we used RNA sequencing and Ingenuity Pathway Analysis to identify possible downstream genes regulated by ATIC and found that miR-145-5p regulated the protein levels of fibronectin 1, Slug, cyclin A2, cyclin B1, P57, and interferon-induced transmembrane 1 via ATIC. ATIC may be a valuable predictor of prognosis and a potential therapeutic target for UTUC.
Collapse
Affiliation(s)
- Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Lun Chang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ting Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| | - Jhen-Hao Jhan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ru Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University and College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Zhou Q, Lei C, Cui F, Chen H, Cao X. Circ-ATIC regulates esophageal squamous cell carcinoma growth and metastasis through miR-1294/PBX3 pathway. Heliyon 2023; 9:e12916. [PMID: 36699282 PMCID: PMC9868444 DOI: 10.1016/j.heliyon.2023.e12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a digestive tract malignancy associated with poor clinical outcome. Growing evidence have elucidated that circular RNAs (circRNAs) play important roles in the pathological process of ESCC. However, the detailed mechanisms how circRNAs modulate the development of ESCC remain largely unknown. Our study aimed to decipher the role and mechanism of circ-ATIC (also termed as circRNA_0058063) in regulating the progression of ESCC. We found that circ-ATIC and its host gene ATIC were significantly increased in ESCC tissues and cells compared with the adjacent noncancerous tissues or normal esophagus epithelial cell. Circ-ATIC knockdown substantially reduced proliferation and the number of invaded ESCC cells and retarded EMT process, reflecting by the decreased N-cadherin and elevated E-cadherin. However, the level of host gene ATIC was not changed under circ-ATIC suppression. It was predicted that circ-ATIC could bind to miR-1294 and serve as a sponge RNA. The luciferase reporter assay and RNA immunoprecipitation (RIP) assay confirmed their relations. MiR-1294 was decreased in ESCC tissues and cells, which was reversely correlated with circ-ATIC level. Furthermore, PBX3 was predicted and proved to be a downstream direct target of miR-1294. PBX3 mRNA and protein were obviously upregulated in ESCC tumor tissues and cells. PBX3 overexpression could reverse the suppressive roles of miR-1294 mimics on ESCC proliferation and invasion. In an xenograft nude mice model, stable transfection of sh-circ-ATIC significantly retarded the growth of tumor and suppressed VEGF and Ki67. Collectively, circ-ATIC promoted ESCC proliferation and invasion by regulating miR-1294/PBX3 axis.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital (Jingzhou Hospital Affiliated to Yangtze University), Jingzhou, 434000, Hubei, PR China
| | - Chengang Lei
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital (Jingzhou Hospital Affiliated to Yangtze University), Jingzhou, 434000, Hubei, PR China
| | - Fenghe Cui
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital (Jingzhou Hospital Affiliated to Yangtze University), Jingzhou, 434000, Hubei, PR China
| | - Hao Chen
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, PR China
| | - Xianzhao Cao
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, PR China,Corresponding author. Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, No. 16 Daling Road, Zhangwan District, Shiyan, 442008, Hubei, PR China.
| |
Collapse
|
5
|
Zhang X, Zhen D, Li X, Yi F, Zhang Z, Yang W, Li X, Sheng Y, Liu X, Jin T, He Y. NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 Genetic Variations are Associated with Ventricular Septal Defect in the Chinese Tibetan Population Through Whole-Exome Sequencing. Pharmgenomics Pers Med 2023; 16:389-400. [PMID: 37138656 PMCID: PMC10150769 DOI: 10.2147/pgpm.s404438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background Ventricular septal defect (VSD) is the most common congenital cardiac abnormality in children and the second most common in adults. This study aimed to explore the potentially causative genes in VSD patients in the Chinese Tibetan population, and to provide a theoretical basis for the genetic mechanism of VSD. Methods Peripheral venous blood was collected from 20 VSD subjects, and whole-genome DNA was extracted. High-throughput sequencing was performed on qualified DNA samples using whole-exome sequencing (WES) technology. After filtering, detecting, and annotating qualified data, single nucleotide variations (SNVs) and insertion-deletion (InDel) markers were analyzed, and data processing software such as GATK, SIFT, Polyphen, and MutationTaster were used for comparative evaluation and prediction of pathogenic deleterious variants associated with VSD. Results A total of 4793 variant loci, including 4168 SNVs, 557 InDels and 68 unknown loci and 2566 variant genes were obtained from 20 VSD subjects through bioinformatics analysis. According to the screening of the prediction software and database, the occurrence of VSD was predicted to be associated with five inherited pathogenic gene mutations, all of which were missense mutations, including NOTCH2 (c.1396C >A:p.Gln466Lys), ATIC (c.235C >T:p.Arg79Cys), MRI1 (c.629G >A:p.Arg210Gln), SLC6A13 (c.1138G >A:p.Gly380Arg), ATP13A2 (c.1363C >T:p.Arg455Trp). Conclusion This study demonstrated that NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 gene variants were potentially associated with VSD in Chinese Tibetan population.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Department of Ultrasound, the Affiliated Hospital of Xizang Minzu University, Xianyang, People’s Republic of China
| | - Da Zhen
- Department of Medical, Tibet Autonomous Region Maternity and Children’s Hospital, Lhasa, People’s Republic of China
| | - Xuemei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Faling Yi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Zhanhao Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Wei Yang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Department of Emergency, the Affiliated Hospital of Xizang Minzu University, Xianyang, People’s Republic of China
| | - Xuguang Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Yemeng Sheng
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Xiaoli Liu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Tianbo Jin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Correspondence: Tianbo Jin; Yongjun He, Xizang Minzu University, #6 East Wenhui Road, Xianyang, Shaanxi, 712082, People’s Republic of China, Email ;
| | - Yongjun He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| |
Collapse
|
6
|
Yang FF, Hu T, Liu JQ, Yu XQ, Ma LY. Histone deacetylases (HDACs) as the promising immunotherapeutic targets for hematologic cancer treatment. Eur J Med Chem 2022; 245:114920. [PMID: 36399875 DOI: 10.1016/j.ejmech.2022.114920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
7
|
Huang SW, Luo JY, Qin LT, Huang SN, Huang ZG, Dang YW, He J, Zeng JH, Wei ZX, Lu W, Chen G. Up-regulation of ITGAV and the underlying mechanisms in nasopharyngeal carcinoma. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Niu N, Zeng J, Ke X, Zheng W, Fu C, Lv S, Fu J, Yu Y. ATIC facilitates cell growth and migration by upregulating Myc expression in lung adenocarcinoma. Oncol Lett 2022; 23:131. [PMID: 35251351 PMCID: PMC8895470 DOI: 10.3892/ol.2022.13251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a catalysing enzyme in the de novo purine biosynthetic pathway, has been previously reported to be upregulated and to participate in myeloma and hepatocellular carcinoma progression. In the present study, by using bioinformatics technology, a higher ATIC expression was identified in lung adenocarcinoma (LUAD) tissues than in normal tissues, and ATIC expression was found to be positively associated with Myc expression in LUAD tissues. In addition, the role of ATIC in modulating the growth and migration of LUAD cells was explored and the involvement of Myc was revealed. ATIC expression in 56 paired LUAD and tumour adjacent non-cancerous tissues was assessed using reverse transcription-quantitative PCR and western blot analysis. Pearson's correlation analysis was applied to evaluate the correlation between ATIC and Myc expression levels in LUAD tissues. A rescue experiment was performed to explore the role of ATIC/Myc in regulating the growth, migration and invasion of HCC827 and NCI-H1435 cells. It was demonstrated that ATIC was overexpressed in LUAD tissues, particularly in advanced-stage LUAD, and was predicted to be associated with an advanced TNM stage, a higher lymph node metastasis rate, poor tissue differentiation and a lower overall survival rate. ATIC overexpression promoted cell growth, migratory and invasive capacities, whereas this effect was abrogated by Myc knockdown in the HCC827 and NCI-H1435 cells. On the whole, the present study demonstrates that ATIC promotes LUAD cell growth and migration by increasing Myc expression.
Collapse
Affiliation(s)
- Niu Niu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Jialong Zeng
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Xianni Ke
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Wenyu Zheng
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Chunmei Fu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Shiqi Lv
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Jianghong Fu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Yang Yu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
9
|
Impact of Variants in the ATIC and ARID5B Genes on Therapeutic Failure with Imatinib in Patients with Chronic Myeloid Leukemia. Genes (Basel) 2022; 13:genes13020330. [PMID: 35205374 PMCID: PMC8872593 DOI: 10.3390/genes13020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm derived from the balanced reciprocal translocation of chromosomes 9 and 22 t (9q34 and 22q11), which leads to the formation of the Philadelphia chromosome and fusion of the BCR-ABL genes. The first-line treatment for CML is imatinib, a tyrosine kinase inhibitor that acts on the BCR-ABL protein. However, even though it is a target-specific drug, about 25% of patients do not respond to this treatment. The resistance mechanisms involved in this process have been investigated and studies have shown that germinal alterations can influence this mechanism. The aim of this work was to investigate 32 polymorphisms in 24 genes of carcinogenic pathway to verify the influence of these genetic variants on the response to treatment with imatinib. Our results demonstrated that individuals with the recessive GG genotype for the rs2372536 variant in the ATIC gene are approximately three times more likely to experience treatment failure with imatinib (p = 0.045, HR = 2.726, 95% CI = 0.9986–7.441), as well as individuals with the TT genotype for the rs10821936 variant in the ARID5B gene, who also have a higher risk for treatment failure with imatinib over time (p = 0.02, HR = 0.4053, IC 95% = 0.1802–0.911). In conclusion, we show that variants in the ATIC and ARIDB5 gene, never screened in previous studies, could potentially influence the therapeutic response to imatinib in patients treated for CML.
Collapse
|