1
|
Samimi MN, Hale A, Schults J, Fischer A, Roberts JA, Dhanani J. Clinical guidance for unfractionated heparin dosing and monitoring in critically ill patients. Expert Opin Pharmacother 2024; 25:985-997. [PMID: 38825778 DOI: 10.1080/14656566.2024.2364057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Unfractionated heparin is a widely used anticoagulant in critically ill patients. It has a well-established safety profile and remains an attractive option for clinicians due to its short half-life and reversibility. Heparin has a unique pharmacokinetic profile, which contributes to significant inter-patient and intra-patient variability in effect. The variability in anticoagulant effect combined with heparin's short half-life mean close monitoring is required for clinical efficacy and preventing adverse effects. To optimize heparin use in critically ill patients, effective monitoring assays and dose adjustment strategies are needed. AREAS COVERED This paper explores the use of heparin as an anticoagulant and optimal approaches to monitoring in critically ill patients. EXPERT OPINION Conventional monitoring assays for heparin dosing have significant limitations. Emerging data appear to favor using anti-Xa assay monitoring for heparin anticoagulation, which many centers have successfully adopted as the standard. The anti-Xa assay appears have important benefits relative to the aPTT for heparin monitoring in critically ill patients, and should be considered for broader use.
Collapse
Affiliation(s)
- May N Samimi
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew Hale
- Discipline of Pharmacy, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jessica Schults
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- School of Nursing, Midwifery and Social Work, University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| | - Andreas Fischer
- Pharmacy Department, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Jayesh Dhanani
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
2
|
Frackiewicz A, Kalaska B, Miklosz J, Mogielnicki A. The methods for removal of direct oral anticoagulants and heparins to improve the monitoring of hemostasis: a narrative literature review. Thromb J 2023; 21:58. [PMID: 37208753 DOI: 10.1186/s12959-023-00501-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
The assessment of hemostasis is necessary to make suitable decisions on the management of patients with thrombotic disorders. In some clinical situations, for example, during thrombophilia screening, the presence of anticoagulants in sample makes diagnosis impossible. Various elimination methods may overcome anticoagulant interference. DOAC-Stop, DOAC-Remove and DOAC Filter are available methods to remove direct oral anticoagulants in diagnostic tests, although there are still reports on their incomplete efficacy in several assays. The new antidotes for direct oral anticoagulants - idarucizumab and andexanet alfa - could be potentially useful, but have their drawbacks. The necessity to remove heparins is also arising as heparin contamination from central venous catheter or therapy with heparin disturbs the appropriate hemostasis assessment. Heparinase and polybrene are already present in commercial reagents but a fully-effective neutralizer is still a challenge for researchers, thus promising candidates remain in the research phase.
Collapse
Affiliation(s)
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
van de Berg TW, Mulder MMG, Alnima T, Nagy M, van Oerle R, Beckers EAM, Hackeng TM, Hulshof AM, Sels JWEM, Henskens YMC, van der Horst ICC, ten Cate H, Spronk HMH, van Bussel BCT. Serial thrombin generation and exploration of alternative anticoagulants in critically ill COVID-19 patients: Observations from Maastricht Intensive Care COVID Cohort. Front Cardiovasc Med 2022; 9:929284. [PMID: 36277784 PMCID: PMC9582511 DOI: 10.3389/fcvm.2022.929284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background COVID-19 associated coagulopathy (CAC) is associated with an increase in thromboembolic events. Current guidelines recommend prophylactic heparins in the management of CAC. However, the efficacy of this strategy in the intensive care population remains uncertain. Objective We aimed to measure thrombin generation (TG) to assess CAC in intensive care unit (ICU) patients receiving thromboprophylaxis with low molecular weight heparin (LMWH) or unfractionated heparin (UFH). In addition, we performed statistical modeling to link TG parameters to patient characteristics and clinical parameters. Lastly, we studied the potency of different anticoagulants as an alternative to LMWH treatment in ex vivo COVID-19 plasma. Patients/Methods We included 33 patients with confirmed COVID-19 admitted at the ICU. TG was measured at least twice over the course of 6 weeks after admission. Thrombin generation parameters peak height and endogenous thrombin potential (ETP) were compared to healthy controls. Results were subsequently correlated with a patient characteristics and laboratory measurements. In vitro spiking in TG with rivaroxaban, dabigatran, argatroban and orgaran was performed and compared to LMWH. Results Anti-Xa levels of all patients remained within the therapeutic range throughout follow-up. At baseline, the mean (SE) endogenous thrombin potential (ETP) was 1,727 (170) nM min and 1,620 (460) nM min for ellagic acid (EA) and tissue factor (TF), respectively. In line with this we found a mean (SE) peak height of 353 (45) nM and 264 (96) nM for EA and TF. Although fluctuating across the weeks of follow-up, TG parameters remained elevated despite thromboprophylaxis. In vitro comparison of LMWHs and direct thrombin inhibitors (e.g., agratroban, dabigatran) revealed a higher efficacy in reducing coagulation potential for direct thrombin inhibition in both ellagic acid (EA) and tissue factor (TF) triggered TG. Conclusion In a sub-group of mechanically ventilated, critically ill COVID-19 patients, despite apparent adequate anti-coagulation doses evaluated by anti-Xa levels, thrombin generation potential remained high during ICU admission independent of age, sex, body mass index, APACHE II score, cardiovascular disease, and smoking status. These observations could, only partially, be explained by (anti)coagulation and thrombosis, inflammation, and multi-organ failure. Our in vitro data suggested that direct thrombin inhibition compared with LMWH might offer an alternate, more effective anticoagulant strategy in COVID-19.
Collapse
Affiliation(s)
- Tom W. van de Berg
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Mark M. G. Mulder
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,*Correspondence: Mark M. G. Mulder
| | - Teba Alnima
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Rene van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Erik A. M. Beckers
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Jan-Willem E. M. Sels
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Department of Cardiology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Yvonne M. C. Henskens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands,Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Hugo ten Cate
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands,Thrombosis Expertise Centre Maastricht, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Bas C. T. van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
4
|
Jakimczuk A, Kalaska B, Kamiński K, Miklosz J, Yusa SI, Pawlak D, Szczubiałka K, Mogielnicki A. Monitoring of Anticoagulant Activity of Dabigatran and Rivaroxaban in the Presence of Heparins. J Clin Med 2022; 11:jcm11082236. [PMID: 35456329 PMCID: PMC9028841 DOI: 10.3390/jcm11082236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The routine monitoring of direct oral anticoagulants (DOACs) may be considered in patients with renal impairment, patients who are heavily obese, or patients requiring elective surgery. Using the heparin-binding copolymer (HBC) and polybrene, we aimed to develop a solution for monitoring the anticoagulant activity of DOACs in human plasma in the interfering presence of unfractionated heparin (UFH) and enoxaparin. The thrombin time (TT) and anti-factor Xa activity were monitored in pooled plasma from healthy volunteers. In these tests, plasma with dabigatran or rivaroxaban was mixed with UFH or enoxaparin and then incubated with HBC or polybrene, respectively. HBC and polybrene neutralized heparins and enabled monitoring of anticoagulant activity of dabigatran in the TT test. Both agents allowed for accurate measurement of anti-factor Xa activity in the plasma containing rivaroxaban and heparins in the concentration range reached in patients’ blood. Here, we present diagnostic tools that may improve the control of anticoagulation by eliminating the contamination of blood samples with heparins and enabling the monitoring of DOACs’ activity.
Collapse
Affiliation(s)
- Aleksandra Jakimczuk
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.J.); (J.M.); (D.P.); (A.M.)
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.J.); (J.M.); (D.P.); (A.M.)
- Correspondence: (B.K.); (K.K.); Tel.: +48-85-748-5660 (B.K.); +48-660589819 (K.K.)
| | - Kamil Kamiński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
- Correspondence: (B.K.); (K.K.); Tel.: +48-85-748-5660 (B.K.); +48-660589819 (K.K.)
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.J.); (J.M.); (D.P.); (A.M.)
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.J.); (J.M.); (D.P.); (A.M.)
| | - Krzysztof Szczubiałka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.J.); (J.M.); (D.P.); (A.M.)
| |
Collapse
|