1
|
Hong Y, Gong L, Yu B, Dong Y. PPM1A suppresses the proliferation and invasiveness of RCC cells via Smad2/3 signaling inhibition. J Recept Signal Transduct Res 2021; 41:245-254. [PMID: 32878540 DOI: 10.1080/10799893.2020.1806316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cytokine therapies show promise in treating renal cell carcinoma (RCC). Transforming growth factor beta 1 (TGF-β1) is a cytokine whose downstream Smad2/3 signaling activity is inhibited by the protein phosphatase Mg2+/Mn2+-dependent 1 A (PPM1A). Here, we hypothesized that PPM1A may be involved in suppressing RCC cell aggressiveness through its negative regulation of Smad2/3. METHODS We quantified PPM1A expression from RCC tumors and matching healthy tissue and performed a Kaplan-Meier survival analysis. In silico analysis on PPM1A was performed using Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma and Clinical Proteomic Tumor Analysis Consortium RCC cohort data. We tested four RCC cell lines and selected the ACNH and A498 cells lines as expressing the greatest PPM1A levels. We assayed the effects of RNAi-mediated PPM1A silencing on invasiveness, proliferation, colony formation, and Smad2/3 phosphorylation in untreated and TGF-β1-stimulated ACNH and A498 cells. A nude mouse A498 xenograft tumor model was constructed to validate PPM1A's effects in vivo. RESULTS PPM1A levels are reduced in RCC tumors and are negatively correlated with RCC grade and stage. Below-median PPM1A expression is associated with reduced overall survival in RCC patients. PPM1A silencing promoted cellular invasiveness, proliferation, colony formation, and Smad2/3 phosphorylation under TGF-β1-stimulated conditions but not under untreated conditions. These effects of PPM1A were shown to be dependent on Smad2/3. Intratumor PPM1A overexpression inhibited A498 xenograft tumor growth. CONCLUSIONS This study establishes a direct link between PPM1A's suppression of Smad2/3 signaling and RCC cell aggressiveness. PPM1A could potentially serve as a biomarker for RCC cell aggressiveness.
Collapse
Affiliation(s)
- Yejing Hong
- Department of Nephrology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Liangliang Gong
- Department of Rheumatology & Immunology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Biying Yu
- Department of Nephrology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Yishan Dong
- Department of Geriatrics, Jiangjin Central Hospital, Jiangjin, Chongqing, China
- Department of Geriatrics, Jiangjin Central Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Lin HP, Ho HM, Chang CW, Yeh SD, Su YW, Tan TH, Lin WJ. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis. FASEB J 2019; 33:14653-14667. [PMID: 31693867 DOI: 10.1096/fj.201802558rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dual-specificity phosphatases (DUSPs) regulate the activity of various downstream kinases through serine or threonine or tyrosine dephosphorylation. Loss of function and aberrant expression of DUSPs has been implicated in cancer progression and poor survival, yet the function of DUSP22 in prostate cancer (PCa) cells is not clear. Gene Expression Omnibus and cBioPortal microarray database analyses showed that DUSP22 expression was lower in PCa tissues than normal prostate tissues, and altered DUSP22 expression was associated with shorter progression-free and disease-free survival of patients with PCa. Exogenous DUSP22 expression in LNCaP, PC3, and C4-2B PCa cells inhibited cellular proliferation and colony formation, supporting a growth inhibitory role for DUSP22 in PCa cells. DUSP22 expression significantly attenuated epidermal growth factor (EGF) receptor (EGFR) and its downstream ERK1/2 signaling by dephosphorylation. However, DUSP22 failed to suppress the growth of CWR22Rv1 and DU145 cells with elevated phosphorylated (p-)ERK1/2 levels. A serine-to-alanine mutation at position 58, a potential ERK1/2-targeted phosphorylation site in DUSP22, was sufficient to suppress growth of CWR22Rv1 cells with elevated p-ERK1/2 levels, suggesting a mutually antagonistic relationship between DUSP22 and ERK1/2 dependent on phosphorylation status. We showed that DUSP22 can suppress prostate-specific antigen gene expression through phosphatase-dependent pathways, suggesting that DUSP22 is an important regulator of the androgen receptor (AR) in PCa cells. Mechanistically, DUSP22 can interact with AR as a regulatory partner and interfere with EGF-induced AR phosphorylation at Tyr534, suggesting that DUSP22 serves as a crucial suppressor of both EGFR and AR-dependent signaling in PCa cells via dephosphorylation. Our findings indicate that loss of function of DUSP22 in PCa cells leads to aberrant activation of both EGFR-ERKs and AR signaling and ultimately progression of PCa, supporting the potential for novel therapeutic design of harnessing DUSP22 in the treatment of PCa.-Lin, H.-P., Ho, H.-M., Chang, C.-W., Yeh, S.-D., Su, Y.-W., Tan, T.-H., Lin, W.-J. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis.
Collapse
Affiliation(s)
- Hsiu-Ping Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Hui-Min Ho
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Cheng-Wei Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Shauh-Der Yeh
- Department of Urology, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan; and
| |
Collapse
|
3
|
Kurose H, Naito Y, Akiba J, Kondo R, Ogasawara S, Kusano H, Sanada S, Abe H, Kakuma T, Ueda K, Igawa T, Yano H. High sulfite oxidase expression could predict postoperative biochemical recurrence in patients with prostate cancer. Med Mol Morphol 2019; 52:164-172. [PMID: 30631948 DOI: 10.1007/s00795-018-00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Sulfite oxidase (SUOX) is a metalloenzyme that plays a role in ATP synthesis via oxidative phosphorylation in mitochondria and has been reported to also be involved in the invasion and differentiation capacities of tumor cells. Here, we performed a clinicopathological investigation of SUOX expression in prostate cancer and discussed the usefulness of SUOX expression as a predictor of biochemical recurrence following surgical treatment in prostate cancer. This study was conducted using Tissue Micro Array specimens obtained from 97 patients who underwent radical prostatectomy at our hospital between 2007 and 2011. SUOX staining was used to evaluate cytoplasmic SUOX expression. In the high-expression group, the early biochemical recurrence was significantly more frequent than in the low-expression group (p = 0.0008). In multivariate analysis, high SUOX expression was found to serve as an independent prognostic factor of biochemical recurrence (hazard ratio = 2.33, 95% confidence interval = 1.32-4.15, p = 0.0037). In addition, Ki-67-labeling indices were significantly higher in the high-expression group than in the low-expression group (p = 0.0058). Therefore, SUOX expression may be a powerful prognostic biomarker for decision-making in postoperative follow-up after total prostatectomy and with regard to the need for relief treatment.
Collapse
Affiliation(s)
- Hirofumi Kurose
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.,Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan. .,Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan.
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sakiko Sanada
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Tatsuyuki Kakuma
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|