1
|
Zamani-Siahkali N, Mirshahvalad SA, Farbod A, Divband G, Pirich C, Veit-Haibach P, Cook G, Beheshti M. SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases. Semin Nucl Med 2024; 54:356-370. [PMID: 38172001 DOI: 10.1053/j.semnuclmed.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.
Collapse
Affiliation(s)
- Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Mohseninia N, Zamani-Siahkali N, Harsini S, Divband G, Pirich C, Beheshti M. Bone Metastasis in Prostate Cancer: Bone Scan Versus PET Imaging. Semin Nucl Med 2024; 54:97-118. [PMID: 37596138 DOI: 10.1053/j.semnuclmed.2023.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Research center for Nuclear Medicine and Molecular Imaging, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Harsini
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Vetrone L, Fortunati E, Castellucci P, Fanti S. Future Imaging of Prostate Cancer: Do We Need More Than PSMA PET/CT? Semin Nucl Med 2024; 54:150-162. [PMID: 37394289 DOI: 10.1053/j.semnuclmed.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
In the setting of prostate cancer (PCa), many different imaging modalities are available to correctly assess staging, restaging, treatment response and radio-ligand therapy recruitment. The introduction of fluoride or gallium-labelled prostate specific membrane antigen (PSMA) made a revolution in PCa management, also due to its possible theragnostic use. Nowadays PSMA-PET/CT is a fundamental tool for staging and restaging PCa. This review discusses the latest findings in PSMA imaging in PCa patients and the impact of PSMA imaging on the patients' management in primary staging, biochemical recurrence and in advanced prostate cancer, always keeping in mind the important theragnostic role of PSMA. This review tries also to assess the current role of other radiopharmaceuticals as Choline, FACBC or other radiotracers like gastrin-releasing peptide receptor targeting tracers and FAPI in different PCa settings.
Collapse
Affiliation(s)
- Luigia Vetrone
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Emilia Fortunati
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|