1
|
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski MEH, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 2024; 227:iyae034. [PMID: 38551457 PMCID: PMC11075561 DOI: 10.1093/genetics/iyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 05/08/2024] Open
Abstract
Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.
Collapse
Affiliation(s)
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Chen H, Sun H, Xie J, Yao Z, Zheng W, Li Z, Deng Z, Li X, Zhang H. CRISPR/Cas9-induced Mutation of Sex Peptide Receptor Gene Bdspr Affects Ovary, Egg Laying, and Female Fecundity in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:2. [PMID: 36640045 PMCID: PMC9840094 DOI: 10.1093/jisesa/ieac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 06/17/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an invasive and polyphagous pest of horticultural crops, and it can cause huge economic losses in agricultural production. The rapid development of CRISPR/Cas9 gene editing technology has provided new opportunities for the scientific control of agricultural pests. Here, we explore the applicability of the B. dorsalis sex peptide receptor (Bdspr) as a target gene for the CRISPR/Cas9-based sterile insect technique (SIT) in B. dorsalis. We screened two high-efficient single guide RNAs (sgRNAs) for gene editing. The results showed that both mutation efficiency and germline transmission rate were 100% in the surviving G0 females (8/8) from injected embryos, and that 75% of mosaically mutated G0 females (6/8) were sterile. The 50% of heterozygous G1 females (4/8) could not lay eggs; 100% of eggs laid by them could not survive; and 62.5% of individual females (5/8) had abnormal ovaries. These results indicate that Bdspr plays an important role in regulating fertility, egg viability, and ovary development in female B. dorsalis, suggesting that the spr gene can be used for CRISPR/Cas9-based SIT in B. dorsalis.
Collapse
Affiliation(s)
| | | | - Junfei Xie
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhichao Yao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhurong Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | | |
Collapse
|
3
|
Fabrick JA, Hull JJ. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells. J Vis Exp 2017:55756. [PMID: 28448055 PMCID: PMC5565091 DOI: 10.3791/55756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture;
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture
| |
Collapse
|
4
|
Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila. PLoS Biol 2016; 14:e1002455. [PMID: 27145127 PMCID: PMC4856363 DOI: 10.1371/journal.pbio.1002455] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.
Collapse
|