1
|
Lilja T, Lindström A, Hernández-Triana LM, Di Luca M, Lwande OW. European Culex pipiens Populations Carry Different Strains of Wolbachia pipientis. INSECTS 2024; 15:639. [PMID: 39336607 PMCID: PMC11432034 DOI: 10.3390/insects15090639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
The mosquito Culex pipiens occurs in two ecotypes differing in their mating and overwintering behavior: pipiens mate in open environments and diapause, and molestus also mate in small spaces and is active throughout the year. Cx. pipiens carry Wolbachia endosymbionts of the wPip strain, but the frequency of infection differs between studied populations. Wolbachia infection affects the host reproductive success through cytoplasmic incompatibility. wPip Wolbachia is divided into five types, wPip I-V. The type of wPip carried varies among Cx. pipiens populations. In northern European locations different wPip types are found in the two ecotypes, whereas in southern locations, they often carry the same type, indicating differences in hybridization between ecotypes. In this study, Cx. pipiens specimens of both ecotypes were collected from Sweden and compared to specimens from Norway, England, Italy, and the Netherlands, as well as Cx. quinquefasciatus from Mali and Thailand. The abundance varied, but all specimens were infected by Wolbachia, while the tested specimens of other mosquito species were often uninfected. The wPip strains were determined through the sequence analysis of Wolbachia genes ank2 and pk1, showing that Cx. pipiens ecotypes in Scandinavia carry different wPip strains. The observed differences in wPip strains indicate that hybridization is not frequent and may contribute to barriers against hybridization of the ecotypes in Sweden and Norway.
Collapse
Affiliation(s)
- Tobias Lilja
- Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden
| | - Anders Lindström
- Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden
| | - Luis M Hernández-Triana
- Vector-Borne Diseases Research Group, Virology Department, Animal and Plant Health Agency (APHA), Addlestone KT15 3NB, UK
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | |
Collapse
|
2
|
Ali R, Lezcano RD, Jayaraman J, Mohammed A, Carrington CVF, Daniel B, Lovin DD, Cunningham JM, Severson DW, Ramsubhag A. DNA Barcoding Analysis of Trinidad Haemagogus Mosquitoes Reveals Evidence for Putative New Species. Vector Borne Zoonotic Dis 2024; 24:237-244. [PMID: 38306182 DOI: 10.1089/vbz.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
Background: Haemagogus janthinomys is a primary sylvan vector of yellow fever virus and the emerging Mayaro virus. However, despite its medical importance, there is a dearth of data on the molecular taxonomy of this mosquito species. Methods: In this study, DNA barcoding analysis was performed on 64 adult female mosquitoes from Trinidad morphologically identified as Hg. janthinomys. The mitochondrial cytochrome c oxidase I (COI) gene and ribosomal DNA internal transcribed spacer 2 (ITS2) region of the mosquitoes were PCR amplified and sequenced, and molecular phylogenies inferred. Results: The BLASTN analysis showed that only 20% (n = 13/66) of COI sequences had high similarity (>99% identity) to Hg. janthinomys and the remaining sequences had low similarity (<90% identity) to reference GenBank sequences. Phylogenetic analysis of COI sequences revealed the presence of four strongly supported groups, with one distinct clade that did not align with any reference sequences. Corresponding ITS2 sequences for samples in this distinct COI group clustered into three clades. Conclusions: These molecular findings suggest the existence of a putative new Haemagogus mosquito species and underscore the need for further, more in-depth investigations into the taxonomy and classification of the Haemagogus genus.
Collapse
Affiliation(s)
- Renee Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Raul Diosany Lezcano
- Insect Vector Control Division, Ministry of Health, Cunupia, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Christine V F Carrington
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Brent Daniel
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Diane D Lovin
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joanne M Cunningham
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - David W Severson
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| |
Collapse
|
3
|
Jourdan J, Bundschuh M, Copilaș-Ciocianu D, Fišer C, Grabowski M, Hupało K, Jemec Kokalj A, Kabus J, Römbke J, Soose LJ, Oehlmann J. Cryptic Species in Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1889-1914. [PMID: 37314101 DOI: 10.1002/etc.5696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
The advent of genetic methods has led to the discovery of an increasing number of species that previously could not be distinguished from each other on the basis of morphological characteristics. Even though there has been an exponential growth of publications on cryptic species, such species are rarely considered in ecotoxicology. Thus, the particular question of ecological differentiation and the sensitivity of closely related cryptic species is rarely addressed. Tackling this question, however, is of key importance for evolutionary ecology, conservation biology, and, in particular, regulatory ecotoxicology. At the same time, the use of species with (known or unknown) cryptic diversity might be a reason for the lack of reproducibility of ecotoxicological experiments and implies a false extrapolation of the findings. Our critical review includes a database and literature search through which we investigated how many of the species most frequently used in ecotoxicological assessments show evidence of cryptic diversity. We found a high proportion of reports indicating overlooked species diversity, especially in invertebrates. In terrestrial and aquatic realms, at least 67% and 54% of commonly used species, respectively, were identified as cryptic species complexes. The issue is less prominent in vertebrates, in which we found evidence for cryptic species complexes in 27% of aquatic and 6.7% of terrestrial vertebrates. We further exemplified why different evolutionary histories may significantly determine cryptic species' ecology and sensitivity to pollutants. This in turn may have a major impact on the results of ecotoxicological tests and, consequently, the outcome of environmental risk assessments. Finally, we provide a brief guideline on how to deal practically with cryptic diversity in ecotoxicological studies in general and its implementation in risk assessment procedures in particular. Environ Toxicol Chem 2023;42:1889-1914. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department of Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Vilnius, Lithuania
| | - Cene Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michał Grabowski
- Invertebrate Zoology and Hydrobiology, University of Lodz, Łódź, Poland
| | - Kamil Hupało
- Department of Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Kabus
- Department of Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie, Flörsheim am Main, Germany
| | - Laura J Soose
- Department of Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Department of Aquatic Ecotoxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Soares IMN, Polonio JC, Zequi JAC, Golias HC. Molecular techniques for the taxonomy of Aedes Meigen, 1818 (Culicidae: Aedini): A review of studies from 2010 to 2021. Acta Trop 2022; 236:106694. [PMID: 36122762 DOI: 10.1016/j.actatropica.2022.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
The original description of Aedes Meigen in 1818, written in Latin, was very brief and included a single species, Aedes cinereus. In the last two decades the genus Aedes (Meigen, 1818) has undergone several revisions and reclassifications, with the current proposal being described by Wilkerson in 2015. However, the available keys for morphological identification are still not sufficient to differentiate cryptic species, damaged species, or those with confusing taxonomy. The current study aims to identify and describe the main taxonomic proposals and molecular methodologies available for the identification of the genus Aedes published between the years 2010 and 2021. The main molecular techniques used to identify the genus in the last 10 years, are: Multiplex PCR, DNA barcoding, nuclear and mitochondrial markers, environmental DNA, and bacterial microbiome analysis. This review highlights that there are catalogued data for only a few species of the genus Aedes, being restricted to medically important taxa such as Aedes albopictus and Aedes aegypti. The integrative taxonomy approach is a possibility to reconcile morphological and molecular data to improve species delimitation, contributing to future revisions of the genus.
Collapse
Affiliation(s)
| | - Julio Cesar Polonio
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil
| | | | - Halison Correia Golias
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil; Department of Humanities, Microbiology Laboratory, Federal Technological University of Paraná (UTFPR), Marcilio Dias Street, 635, Apucarana, Paraná, Brazil.
| |
Collapse
|
5
|
Tokash-Peters AG, Jabon JD, Fung ME, Peters JA, Lopez SG, Woodhams DC. Trans-Generational Symbiont Transmission Reduced at High Temperatures in a West Nile Virus Vector Mosquito Culex quinquefasciatus. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.762132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of environmental factors on the efficacy of the endosymbiont Wolbachia used in mosquito and pathogen control are poorly characterized and may be critical for disease control. We studied the vector mosquito Culex pipiens quinquefasciatus (Say) to determine the effect of temperature on the composition of the relative abundance of Wolbachia spp. and the microbiome, as well as key immune genes of interest in the Toll and IMD pathways. 16S barcode sequencing was used to determine the microbiome composition and qPCR was used to determine the relative abundance of Wolbachia spp. based on the highly utilized marker Wolbachia surface protein (wsp) gene. We found no effect of temperature within a single generation on the relative abundance of Wolbachia or immune gene expression, nor on the alpha or beta diversity of the microbiome. However, there was a significant difference in the abundance of Wolbachia between generations at high temperatures (≥ 28°C), but not at lower temperatures (≤ 23°C). These results support the idea that Wolbachia are reduced at higher temperatures between generations, which has an influence on the establishment of pathogens including West Nile Virus (WNV). Modulation of the Toll or IMD mosquito immune pathways was not indicated. Wolbachia endosymbiosis and trans-generation transmission appears especially sensitive to high temperatures, which may have implications for Wolbachia-based vector control strategies under climate change scenarios.
Collapse
|
6
|
Abstract
The northern house mosquito Culex pipiens sensu stricto is one of the most important disease vector mosquitoes in temperate zones across the northern hemisphere, responsible for the emergence of West Nile Virus over the last two decades. It comprises two ecologically distinct forms - an aboveground form, pipiens, diapauses in winter and primarily bites birds, while a belowground form, molestus, thrives year-round in subways, basements and other human-made, belowground habitats, bites mammals, and can even lay eggs without a blood meal. The two forms hybridize in some but not all places, leading to a complex ecological mosaic that complicates predictions of vectorial capacity. Moreover, the origin of the belowground molestus is contentious, with iconic populations from the London Underground subway system being held up by evolutionary biologists as a preeminent example of rapid, in situ, urban adaptation and speciation. We review the recent and historical literature on the origin and ecology of this important mosquito and its enigmatic forms. A synthesis of genetic and ecological studies spanning 100+ years clarifies a striking latitudinal gradient - behaviorally divergent and reproductively isolated forms in northern Europe gradually break down into what appear to be well-mixed, intermediate populations in North Africa. Moreover, a continuous narrative thread dating back to the original description of form molestus in Egypt in 1775 refutes the popular idea that belowground mosquitoes in London evolved in situ from their aboveground counterparts. These enigmatic mosquitoes are more likely derived from populations in the Middle East, where human-biting and other adaptations to human environments may have evolved on the timescale of millennia rather than centuries. We outline several areas for future work and discuss the implications of these patterns for public health and for our understanding of urban adaptation in the Anthropocene.
Collapse
|
7
|
Zheng XL. Unveiling mosquito cryptic species and their reproductive isolation. INSECT MOLECULAR BIOLOGY 2020; 29:499-510. [PMID: 32741005 PMCID: PMC7754467 DOI: 10.1111/imb.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are major vectors of many infectious pathogens or parasites. Understanding cryptic species and the speciation of disease vectors has important implications for vector management, evolution and host-pathogen and/or host-parasite interactions. Currently, mosquito cryptic species have been reported in many studies, most of which focus on the reproductive isolation of cryptic species and mainly on Anopheles gambiae sensu lato complex. Emerging species within the primary malaria vector Anopheles gambiae show different ecological preferences and significant prezygotic reproductive isolation, while Aedes mariae and Aedes zammitii show postmating reproductive isolation. However, data reporting the reproductive isolation in Culex and Aedes albopictus mosquito cryptic species is absent. The lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups; what mosquito cryptic species evolutionary processes bring about reproductive isolation in the absence of morphological differentiation? How does Wolbachia infection affect in mosquitoes' reproductive isolation? In this review, we provide a summary of recent advances in the discovery and identification of sibling or cryptic species within mosquito genera.
Collapse
Affiliation(s)
- XL. Zheng
- Department of Pathogen Biology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Sicard M, Bonneau M, Weill M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2019; 34:12-20. [PMID: 31247412 DOI: 10.1016/j.cois.2019.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
To protect humans and domestic animals from mosquito borne diseases, alternative methods to chemical insecticides have to be found. Pilot studies using the vertically transmitted bacterial endosymbiont Wolbachia were already launched in different parts of the world. Wolbachia can be used either in Incompatible Insect Technique (IIT), to decrease mosquito population, or to decrease the ability of mosquitoes to transmit pathogens. Not all mosquito species are naturally infected with Wolbachia: while in Culex pipiens and Aedes albopictus almost all individuals harbor Wolbachia, putative infections have to be further investigated in Anopheles species and in Aedes aegypti. All Wolbachia-based control methods rely on the ability of Wolbachia to induce cytoplasmic incompatibility (CI) resulting in embryonic death in incompatible crossings. Knowledge on CI diversity in mosquito is required to find the better Wolbachia-mosquito associations to optimize the success of both 'sterile insect' and 'pathogen blocking' Wolbachia-based methods.
Collapse
Affiliation(s)
- Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Manon Bonneau
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
9
|
Suesdek L. Microevolution of medically important mosquitoes - A review. Acta Trop 2019; 191:162-171. [PMID: 30529448 DOI: 10.1016/j.actatropica.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
Collapse
|
10
|
Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Merçot H, Weill M, Sicard M, Charlat S. The Toxin-Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. Trends Genet 2019; 35:175-185. [PMID: 30685209 DOI: 10.1016/j.tig.2018.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.
Collapse
Affiliation(s)
- John F Beckmann
- Auburn University, Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn, AL 36849, USA; Equal contribution
| | - Manon Bonneau
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France; Equal contribution
| | - Hongli Chen
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics and Biochemistry, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Denis Poinsot
- Université Rennes 1, Institut de Génétique, Environnement, et Protection des Plantes (IGEPP), Campus Beaulieu, 35042 Rennes, France
| | - Hervé Merçot
- Sorbonne Université, Université Pierre et Marie Curie (UPMC) Université Paris 06, CNRS, Institut de Biologie Paris Seine, Evolution Paris Seine (IBPS, EPS), 7-9 Quai St-Bernard, 75005 Paris, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Mathieu Sicard
- Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France.
| | - Sylvain Charlat
- CNRS, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, 16 rue Raphael Dubois, 69622 Villeurbanne, France.
| |
Collapse
|
11
|
Wilson AJ, Harrup LE. Reproducibility and relevance in insect-arbovirus infection studies. CURRENT OPINION IN INSECT SCIENCE 2018; 28:105-112. [PMID: 30551760 PMCID: PMC6299244 DOI: 10.1016/j.cois.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 06/09/2023]
Abstract
Experimental infections of insects with arboviruses are performed to achieve a variety of objectives but principally to draw inferences about the potential role of field populations in transmission or to explore the molecular basis of vector-pathogen interactions. The design of such studies determines both their reproducibility and the extent to which their results can be extrapolated to natural environments, and is constrained by the resources available. We discuss recent findings regarding the effects of nutrition, the microbiome, co-infecting agents and feeding methods on the outcome of such experiments, and identify resource-efficient ways to increase their relevance and reproducibility, including the development of community standards for reporting such studies and better standards for cell line and colony authentication.
Collapse
Affiliation(s)
- Anthony James Wilson
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | - Lara Ellen Harrup
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
12
|
Guo Y, Song Z, Luo L, Wang Q, Zhou G, Yang D, Zhong D, Zheng X. Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup? Parasit Vectors 2018; 11:228. [PMID: 29618379 PMCID: PMC5885320 DOI: 10.1186/s13071-018-2814-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/25/2018] [Indexed: 11/22/2022] Open
Abstract
Background Aedes (Stegomyia) albopictus (Skuse) is an indigenous species and the predominant vector of dengue fever in China. Understanding of genetic diversity and structure of the mosquito would facilitate dengue prevention and vector control. Sympatric cryptic species have been identified in the Ae. albopictus subgroup in Southeast Asia; however, little is known about the presence and distribution of cryptic species in China. This study aimed to examine the genetic diversity, evaluate potential new cryptic sibling species, and assess the prevalence of Wolbachia infections in field populations. Methods Aedes adult female specimens were collected from five provinces in southern and central China during 2015–2016. Morphological identification was performed under dissection microscope. The mitochondrial DNA cytochrome c oxidase subunit 1 (cox1, DNA barcoding) locus and the ribosomal DNA internal transcribed spacer region 2 (ITS2) marker were used to examine the genetic variation, evaluate cryptic sibling species, and population structure in the field populations. Screening for the presence of Wolbachia was performed using multiplex PCR. Results A total of 140 individual specimens with morphological characteristics similar to Ae. albopictus were sequenced for DNA barcoding. Among these, 129 specimens (92.1%) were confirmed and identified as Ae. albopictus. The remaining 11 specimens, from 2 provinces, were identified as 2 distinct sequence groups, which were confirmed by ITS2 marker sequencing, suggesting the existence of potential cryptic species of Ae. albopictus. In Ae. albopictus, we found significant genetic differentiation and population structure between populations collected from different climate zones. Medium to high frequencies of Wolbachia infections were observed in natural Ae. albopictus populations, whereas Wolbachia was infrequent or absent in cryptic species populations. Conclusions Our findings highlight the population differentiation by climate zone and the presence of novel, cryptic Aedes species in China. The low prevalence of Wolbachia infections in cryptic species populations could reflect either a recent invasion of Wolbachia in Ae. albopictus or different host immune responses to this symbiont in the cryptic species. The study provides useful information for vector control and host-symbiont coevolution. Further study is needed to investigate the potential for arbovirus infection and disease transmission in the emerged cryptic species. Electronic supplementary material The online version of this article (10.1186/s13071-018-2814-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhangyao Song
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Luo
- Department of Disinfection and Pesticide of Center for Disease Control and Prevention of Guangzhou, Guangzhou, Guangdong, China
| | - Qingmin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guofa Zhou
- Program in Public Health School of Medicine, University of California, Irvine, California, USA
| | - Dizi Yang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Zhong
- Program in Public Health School of Medicine, University of California, Irvine, California, USA
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Altinli M, Gunay F, Alten B, Weill M, Sicard M. Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey. Parasit Vectors 2018; 11:198. [PMID: 29558974 PMCID: PMC5859491 DOI: 10.1186/s13071-018-2777-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/06/2018] [Indexed: 12/04/2022] Open
Abstract
Background Wolbachia are maternally transmitted bacteria that can manipulate their hosts’ reproduction causing cytoplasmic incompatibility (CI). CI is a sperm-egg incompatibility resulting in embryonic death. Due to this sterilising effect on mosquitoes, Wolbachia are considered for vector control strategies. Important vectors for arboviruses, filarial nematodes and avian malaria, mosquitoes of Culex pipiens complex are suitable for Wolbachia-based vector control. They are infected with Wolbachia wPip strains belonging to five genetically distinct groups (wPip-I to V) within the Wolbachia B supergroup. CI properties of wPip strongly correlate with this genetic diversity: mosquitoes infected with wPip strains from a different wPip group are more likely to be incompatible with each other. Turkey is a critical spot for vector-borne diseases due to its unique geographical position as a natural bridge between Asia, Europe and Africa. However, general wPip diversity, distribution and CI patterns in natural Cx. pipiens (s.l.) populations in the region are unknown. In this study, we first identified wPip diversity in Turkish Cx. pipiens (s.l.) populations, by assigning them to one of the five groups within wPip (wPip-Ito V). We further investigated CI properties between different wPip strains from this region. Results We showed a wPip fixation in Cx. pipiens (s.l.) populations in Turkey by analysing 753 samples from 59 sampling sites. Three wPip groups were detected in the region: wPip-I, wPip-II and wPip-IV. The most dominant group was wPip-II. While wPip-IV was restricted to only two locations, wPip-I and wPip-II had wider distributions. Individuals infected with wPip-II were found co-existing with individuals infected with wPip-I or wPip-IV in some sampling sites. Two mosquito isofemale lines harbouring either a wPip-I or a wPip-II strain were established from a population in northwestern Turkey. Reciprocal crosses between these lines showed that they were fully compatible with each other but bidirectionally incompatible with wPip-IV Istanbul infected line. Conclusion Our findings reveal a high diversity of wPip and CI properties in Cx. pipiens (s.l.) populations in Turkey. Knowledge on naturally occurring CI patterns caused by wPip diversity in Turkey might be useful for Cx. pipiens (s.l.) control in the region.
Collapse
Affiliation(s)
- Mine Altinli
- Institut des Sciences de l'Evolution de Montpellier (CNRS-Université de Montpellier-IRD-EPHE), Montpellier, France.
| | - Filiz Gunay
- Faculty of Sciences, Department of Biology, Division of Ecology, VERG Laboratories, Hacettepe University, Ankara, Turkey
| | - Bulent Alten
- Faculty of Sciences, Department of Biology, Division of Ecology, VERG Laboratories, Hacettepe University, Ankara, Turkey
| | - Mylene Weill
- Institut des Sciences de l'Evolution de Montpellier (CNRS-Université de Montpellier-IRD-EPHE), Montpellier, France
| | - Mathieu Sicard
- Institut des Sciences de l'Evolution de Montpellier (CNRS-Université de Montpellier-IRD-EPHE), Montpellier, France.
| |
Collapse
|
14
|
Minard G, Tran Van V, Tran FH, Melaun C, Klimpel S, Koch LK, Ly Huynh Kim K, Huynh Thi Thuy T, Tran Ngoc H, Potier P, Mavingui P, Valiente Moro C. Identification of sympatric cryptic species of Aedes albopictus subgroup in Vietnam: new perspectives in phylosymbiosis of insect vector. Parasit Vectors 2017; 10:276. [PMID: 28577575 PMCID: PMC5457575 DOI: 10.1186/s13071-017-2202-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
Background The Aedes (Stegomyia) albopictus subgroup includes 11 cryptic species of which Ae. albopictus is the most widely distributed. Its global expansion associated with a documented vector competence for several emerging arboviruses raise obvious concerns in the recently colonized regions. While several studies have provided important insights regarding medical importance of Ae. albopicus, the investigations of the other sibling species are scarce. In Asia, indigenous populations within the Ae. albopictus subgroup can be found in sympatry. In the present study, we aimed to describe and compare molecular, morphological and bacterial symbionts composition among sympatric individuals from the Ae. albopictus subgroup inhabiting a Vietnamese protected area. Results Based on morphological structure of the cibarial armarture, we identified a cryptic species in the forest park at Bù Gia Mập in the south-eastern region of Vietnam. Analysis of nuclear (ITS1-5.8S-ITS2) and mitochondrial (cox1, nad5) markers confirmed the divergence between the cryptic species and Ae. albopictus. Analysis of midgut bacterial microbiota revealed a strong similarity among the two species with a notable difference; contrary to Ae. albopictus, the cryptic species did not harbour any Wolbachia infection. Conclusions These results could reflect either a recent invasion of Wolbachia in Ae. albopictus or alternatively a loss of this symbiont in the cryptic species. We argue that neglected species of the Ae. albopictus subgroup are of main importance in order to estimate variation of host-symbionts interactions across evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Minard
- Université de Lyon, Lyon, France. .,Université Lyon 1, Villeurbanne, France. .,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France. .,INRA, UMR1418, Villeurbanne, France. .,Metapopulation Research Center, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| | - Van Tran Van
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Florence Hélène Tran
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Christian Melaun
- Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Lisa Katharina Koch
- Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Khanh Ly Huynh Kim
- Department of Medical Entomology and Zoonotics, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Huynh Thi Thuy
- Department of Medical Entomology and Zoonotics, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huu Tran Ngoc
- Department of Medical Entomology and Zoonotics, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Patrick Potier
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France.,Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France.,INRA, UMR1418, Villeurbanne, France
| |
Collapse
|