1
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
2
|
Abstract
ABSTRACT Inflammation is a major underlying mechanism in the progression of numerous cardiovascular diseases (CVDs). Regulatory T cells (Tregs) are typical immune regulatory cells with recognized immunosuppressive properties. Despite the immunosuppressive properties, researchers have acknowledged the significance of Tregs in maintaining tissue homeostasis and facilitating repair/regeneration. Previous studies unveiled the heterogeneity of Tregs in the heart and aorta, which expanded in CVDs with unique transcriptional phenotypes and reparative/regenerative function. This review briefly summarizes the functional principles of Tregs, also including the synergistic effect of Tregs and other immune cells in CVDs. We discriminate the roles and therapeutic potential of Tregs in CVDs such as atherosclerosis, hypertension, abdominal arterial aneurysm, pulmonary arterial hypertension, Kawasaki disease, myocarditis, myocardial infarction, and heart failure. Tregs not only exert anti-inflammatory effects but also actively promote myocardial regeneration and vascular repair, maintaining the stability of the local microenvironment. Given that the specific mechanism of Tregs functioning in CVDs remains unclear, we reviewed previous clinical and basic studies and the latest findings on the function and mechanism of Tregs in CVDs.
Collapse
Affiliation(s)
- Wangling Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
3
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
4
|
Becker-Gotot J, Meissner M, Kotov V, Jurado-Mestre B, Maione A, Pannek A, Albert T, Flores C, Schildberg FA, Gleeson PA, Reipert BM, Oldenburg J, Kurts C. Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs. J Clin Invest 2022; 132:e159925. [PMID: 36107620 PMCID: PMC9663153 DOI: 10.1172/jci159925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2023] Open
Abstract
A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.
Collapse
Affiliation(s)
- Janine Becker-Gotot
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Mirjam Meissner
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Vadim Kotov
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Blanca Jurado-Mestre
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Andrea Maione
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Pannek
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Thilo Albert
- Institute for Experimental Hematology and Transfusion Medicine (IHT), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Chrystel Flores
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Paul A. Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Johannes Oldenburg
- Institute for Experimental Hematology and Transfusion Medicine (IHT), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| |
Collapse
|
5
|
Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022; 10:991840. [PMID: 36211467 PMCID: PMC9537379 DOI: 10.3389/fcell.2022.991840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louisa K James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Lewis Zhichang Shi
- Department of Radiation Oncology University of Alabama at Birmingham School of Medicine (UAB-SOM) UAB Comprehensive Cancer Center, Jinzhou, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Quan Gong
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jinzhou, China
- Department of Immunology, School of Medicine, Yangtze University, Jinzhou, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| |
Collapse
|
6
|
Xu T, Gao S, Ruan H, Liu J, Liu Y, Liu D, Tong J, Shi J, Yang H, Chen K, Zhang X. METTL14 Acts as a Potential Regulator of Tumor Immune and Progression in Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:609174. [PMID: 34122497 PMCID: PMC8194313 DOI: 10.3389/fgene.2021.609174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its insensitivity to chemoradiotherapy and lacks effective diagnostic and prognostic biomarkers. In this study, we focused on the role of m6A RNA methylation regulators for tumor immunity. Based on the expression of 20 m6A regulators, consensus clustering was performed to divide patients into cluster1/cluster2 and showed that there was a survival difference between the two clusters. Through cox regression analysis, five hub m6A regulators were screened to construct a risk model. Further analysis showed that the risk score was an independent prognostic factor. GSEA, GSVA, and KEGG analysis revealed that immune cell pathways played a critical role between the high risk group and low risk group. Combined with CIBERSORT and survival analysis, five hub tumor-infiltrating immune cells (TIICs) were identified for further study. Meanwhile, correlation analysis indicated that IGF2BP2 was positively associated with activated memory CD4 T cell and METTL14 was negatively correlated to the regulatory T cell. Therefore, IGF2BP2 and METTL14 were regarded as key genes. Further study verified that only METTL14 possessed good diagnostic and prognostic value. Then, GSEA exhibited that METTL14 was mainly enriched in chemokine related pathways. We also found that CCL5 was negatively correlated to METTL14 and might serve as a potential target of METTL14. In conclusion, these findings suggest that the METTL14/CCL5/Tregs axis is a potential signaling pathway for regulating tumor immunity, and might become novel therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, Chen J. Dendritic Cells: Versatile Players in Renal Transplantation. Front Immunol 2021; 12:654540. [PMID: 34093544 PMCID: PMC8170486 DOI: 10.3389/fimmu.2021.654540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenxi Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ao Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingwei Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
8
|
Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, Guillonneau C, Wagner DL, Anegon I. Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Front Immunol 2021; 11:611638. [PMID: 33717052 PMCID: PMC7945682 DOI: 10.3389/fimmu.2020.611638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Regulatory Tcells (Treg) are essential components of peripheral immune homeostasis. Adoptive Treg cell therapy has shown efficacy in a variety of immune-mediated diseases in preclinical studies and is now moving from phase I/IIa to larger phase II studies aiming to demonstrate efficacy. However, hurdles such as in vivo stability and efficacy remain to be addressed. Nevertheless, preclinical models have shown that Treg function and specificity can be increased by pharmacological substances or gene modifications, and even that conventional T cells can be converted to Treg potentially providing new sources of Treg and facilitating Treg cell therapy. The exponential growth in genetic engineering techniques and their application to T cells coupled to a large body of knowledge on Treg open numerous opportunities to generate Treg with "superpowers". This review summarizes the genetic engineering techniques available and their applications for the next-generation of Super-Treg with increased function, stability, redirected specificity and survival.
Collapse
Affiliation(s)
- Leila Amini
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jenny Greig
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Séverine Bézie
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carole Guillonneau
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dimitrios L. Wagner
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
9
|
Abstract
ABSTRACT Neuropilins (NRP1 and NRP2) are multifunctional receptor proteins that are involved in nerve, blood vessel, and tumor development. NRP1 was first found to be expressed in neurons, but subsequent studies have demonstrated its surface expression in cells from the endothelium and lymph nodes. NRP1 has been demonstrated to be involved in the occurrence and development of a variety of cancers. NRP1 interacts with various cytokines, such as vascular endothelial growth factor family and its receptor and transforming growth factor β1 and its receptor, to affect tumor angiogenesis, tumor proliferation, and migration. In addition, NRP1+ regulatory T cells (Tregs) play an inhibitory role in tumor immunity. High numbers of NRP1+ Tregs were associated with cancer prognosis. Targeting NRP1 has shown promise, and antagonists against NRP1 have had therapeutic efficacy in preliminary clinical studies. NRP1 treatment modalities using nanomaterials, targeted drugs, oncolytic viruses, and radio-chemotherapy have gradually been developed. Hence, we reviewed the use of NRP1 in the context of tumorigenesis, progression, and treatment.
Collapse
|
10
|
Xu H, Feldman GM, Max EE. High-Dose IV Administration of Rasburicase Suppresses Anti-rasburicase Antibodies, Depletes Rasburicase-Specific Lymphocytes, and Upregulates Treg Cells. AAPS JOURNAL 2020; 22:80. [PMID: 32462555 DOI: 10.1208/s12248-020-00461-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic proteins can be potent agents for treating serious diseases, but in many patients these proteins provoke antibody responses that blunt therapeutic efficacy. Intravenous administration of high doses of some proteins induces immune tolerance, but the mechanisms underlying this effect are poorly understood. As a model to study tolerance induction in mice, we used rasburicase, a commercial recombinant uricase used for the treatment of hyperuricemia. Intraperitoneal (i.p.) injection of rasburicase without or with alum adjuvants induced a clear anti-rasburicase antibody response, but intravenous (i.v.) injection did not. The lack of response to i.v. rasburicase was apparently due to active immune suppression since i.v.-treated mice showed blunted antibody and reduced T cell responses to subsequent i.p. injections of rasburicase. This blunted response was associated with a decrease in rasburicase-specific B cell and T cell responses and an increase in proportion of CD4+ FoxP3+ regulatory T cells (Treg) in the spleen. We examined the number of lymphocytes in peripheral blood after rasburicase i.v. injection. Rasburicase caused a transient reduction in B and T cells, but a robust and sustained depletion of rasburicase-specific B cells. Further experiments showed that rasburicase i.v. injection decreased the number of lymphocytes and was associated with apoptosis of both B cells and activated T cells and that the enhanced percentage of Treg cells was likely mediated by a macrophage-dependent pathway. Thus, our data suggest that apoptosis and depletion of antigen-specific B lymphocytes and upregulation of Treg cells may play important roles in the immune suppression induced by intravenous administration of a therapeutic protein.
Collapse
Affiliation(s)
- Hui Xu
- Laboratory of Immunobiology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Building 72, Room 2324, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Gerald M Feldman
- Laboratory of Immunobiology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Building 72, Room 2324, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Edward E Max
- Laboratory of Immunobiology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Building 72, Room 2324, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
11
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
12
|
CD4 +CD25 highCD127 low/-FoxP 3 + Regulatory T-Cell Population in Acute Leukemias: A Review of the Literature. J Immunol Res 2019; 2019:2816498. [PMID: 30944830 PMCID: PMC6421759 DOI: 10.1155/2019/2816498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023] Open
Abstract
Regulatory T-cells (Tregs) are a very important subtype of lymphocytes when it comes to self-control in the human immunological system. Tregs are decisive not only in the protection against destruction of own tissues by autoimmune immunocompetent cells but also in the immunological answer to developing cancers. On the other hand, Tregs could be responsible for the progression of acute and chronic leukemias. In our study, we review publications available in the PUMED database concerning acute leukemia, with a particular emphasis on child's leukemias. The percentage of regulatory T-lymphocytes in peripheral blood and bone marrow was elevated compared to those in healthy individuals and correlated with progressive disease. Regulatory T-cells taken from children diagnosed with leukemia showed a higher suppressive capability, which was confirmed by detecting elevated levels of secreted IL-10 and TGF-beta. The possibility of pharmacological intervention in the self-control of the immunological system is now under extensive investigation in many human cancers. Presumably, Treg cells could be a vital part of targeted therapies. Routine Treg determination could be used to assess the severity of disease and prognosis in children with acute lymphoblastic leukemia. This proposition results from the fact that in some studies, higher percentage of Treg cells in peripheral blood was demonstrated. However, observations confirming these facts are scarce; thus, extrapolating them to the population of children with hematological malignancies needs to be verified in additional studies.
Collapse
|