1
|
Putri GH, Howitt G, Marsh-Wakefield F, Ashhurst TM, Phipson B. SuperCellCyto: enabling efficient analysis of large scale cytometry datasets. Genome Biol 2024; 25:89. [PMID: 38589921 PMCID: PMC11003185 DOI: 10.1186/s13059-024-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Advancements in cytometry technologies have enabled quantification of up to 50 proteins across millions of cells at single cell resolution. Analysis of cytometry data routinely involves tasks such as data integration, clustering, and dimensionality reduction. While numerous tools exist, many require extensive run times when processing large cytometry data containing millions of cells. Existing solutions, such as random subsampling, are inadequate as they risk excluding rare cell subsets. To address this, we propose SuperCellCyto, an R package that builds on the SuperCell tool which groups highly similar cells into supercells. SuperCellCyto is available on GitHub ( https://github.com/phipsonlab/SuperCellCyto ) and Zenodo ( https://doi.org/10.5281/zenodo.10521294 ).
Collapse
Affiliation(s)
- Givanna H Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - George Howitt
- Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Felix Marsh-Wakefield
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Belinda Phipson
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Gakis G, Angelopoulos I, Panagoulias I, Mouzaki A. Current knowledge on multiple sclerosis pathophysiology, disability progression assessment and treatment options, and the role of autologous hematopoietic stem cell transplantation. Autoimmun Rev 2024; 23:103480. [PMID: 38008300 DOI: 10.1016/j.autrev.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects nearly 2.8 million people each year. MS distinguishes three main types: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). RRMS is the most common type, with the majority of patients eventually progressing to SPMS, in which neurological development is constant, whereas PPMS is characterized by a progressive course from disease onset. New or additional insights into the role of effector and regulatory cells of the immune and CNS systems, Epstein-Barr virus (EBV) infection, and the microbiome in the pathophysiology of MS have emerged, which may lead to the development of more targeted therapies that can halt or reverse neurodegeneration. Depending on the type and severity of the disease, various disease-modifying therapies (DMTs) are currently used for RRMS/SPMS and PPMS. As a last resort, and especially in highly active RRMS that does not respond to DMTs, autologous hematopoietic stem cell transplantation (AHSCT) is performed and has shown good results in reducing neuroinflammation. Nevertheless, the question of its potential role in preventing disability progression remains open. The aim of this review is to provide a comprehensive update on MS pathophysiology, assessment of MS disability progression and current treatments, and to examine the potential role of AHSCT in preventing disability progression.
Collapse
Affiliation(s)
- Georgios Gakis
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Angelopoulos
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
3
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Liston A. Immunology & Cell Biology Publication of the Year Award 2022. Immunol Cell Biol 2023; 101:921-922. [PMID: 37739933 DOI: 10.1111/imcb.12696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Immunology & Cell Biology Publication of the Year Award 2022 winner, Felix Marsh-Wakefield.
Collapse
|
5
|
Baird S, Ashley CL, Marsh‐Wakefield F, Alca S, Ashhurst TM, Ferguson AL, Lukeman H, Counoupas C, Post JJ, Konecny P, Bartlett A, Martinello M, Bull RA, Lloyd A, Grey A, Hutchings O, Palendira U, Britton WJ, Steain M, Triccas JA. A unique cytotoxic CD4 + T cell-signature defines critical COVID-19. Clin Transl Immunology 2023; 12:e1463. [PMID: 37645435 PMCID: PMC10461786 DOI: 10.1002/cti2.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/04/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Objectives SARS-CoV-2 infection causes a spectrum of clinical disease presentation, ranging from asymptomatic to fatal. While neutralising antibody (NAb) responses correlate with protection against symptomatic and severe infection, the contribution of the T-cell response to disease resolution or progression is still unclear. As newly emerging variants of concern have the capacity to partially escape NAb responses, defining the contribution of individual T-cell subsets to disease outcome is imperative to inform the development of next-generation COVID-19 vaccines. Methods Immunophenotyping of T-cell responses in unvaccinated individuals was performed, representing the full spectrum of COVID-19 clinical presentation. Computational and manual analyses were used to identify T-cell populations associated with distinct disease states. Results Critical SARS-CoV-2 infection was characterised by an increase in activated and cytotoxic CD4+ lymphocytes (CTL). These CD4+ CTLs were largely absent in asymptomatic to severe disease states. In contrast, non-critical COVID-19 was associated with high frequencies of naïve T cells and lack of activation marker expression. Conclusion Highly activated and cytotoxic CD4+ T-cell responses may contribute to cell-mediated host tissue damage and progression of COVID-19. Induction of these potentially detrimental T-cell responses should be considered when developing and implementing effective COVID-19 control strategies.
Collapse
Affiliation(s)
- Sarah Baird
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Caroline L Ashley
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Felix Marsh‐Wakefield
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneyCamperdownNSWAustralia
| | - Sibel Alca
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Thomas M Ashhurst
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Sydney Cytometry Core Research FacilityCharles Perkins Centre, Centenary Institute and The University of SydneyCamperdownNSWAustralia
| | - Angela L Ferguson
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
| | - Hannah Lukeman
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Tuberculosis Research ProgramCentenary InstituteSydneyNSWAustralia
| | - Jeffrey J Post
- Prince of Wales Clinical SchoolUNSWSydneyNSWAustralia
- School of Clinical Medicine, Medicine & HealthUNSWSydneyNSWAustralia
| | - Pamela Konecny
- Prince of Wales Clinical SchoolUNSWSydneyNSWAustralia
- St George HospitalSydneyNSWAustralia
| | - Adam Bartlett
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
- Sydney Children's HospitalSydneyNSWAustralia
| | | | - Rowena A Bull
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
| | - Andrew Lloyd
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
| | - Alice Grey
- RPA Virtual Hospital, Sydney Local Health DistrictSydneyNSWAustralia
| | - Owen Hutchings
- RPA Virtual Hospital, Sydney Local Health DistrictSydneyNSWAustralia
| | - Umaimainthan Palendira
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
| | - Warwick J Britton
- Tuberculosis Research ProgramCentenary InstituteSydneyNSWAustralia
- Department of Clinical ImmunologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Megan Steain
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - James A Triccas
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
6
|
Hecker M, Fitzner B, Boxberger N, Putscher E, Engelmann R, Bergmann W, Müller M, Ludwig-Portugall I, Schwartz M, Meister S, Dudesek A, Winkelmann A, Koczan D, Zettl UK. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation 2023; 20:181. [PMID: 37533036 PMCID: PMC10394872 DOI: 10.1186/s12974-023-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS. OBJECTIVES The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., before B-cell depletion and after B-cell repopulation) to better understand the therapeutic effects and to identify biomarker candidates of the clinical response to therapy. METHODS B cells were obtained from blood samples of patients with relapsing-remitting MS (n = 50), patients with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B-cell subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined with regard to their functions and interactions. We also tested for differences in gene expression between patients with and without relapse following alemtuzumab administration. RESULTS Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differences did not pass the false discovery rate correction. CONCLUSIONS We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify their potential value as biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Robby Engelmann
- Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | | | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
7
|
La Flamme AC. Immunology & Cell Biology's Top 10 original research articles 2021-2022. Immunol Cell Biol 2023; 101:6-8. [PMID: 36522837 DOI: 10.1111/imcb.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Aglas‐Leitner F, Juillard P, Juillard A, Byrne SN, Hawke S, Grau GE, Marsh‐Wakefield F. Circulating CCR6 +ILC proportions are lower in multiple sclerosis patients. Clin Transl Immunology 2022; 11:e1426. [PMID: 36578284 PMCID: PMC9782758 DOI: 10.1002/cti2.1426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/17/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives The role of innate lymphoid cells (ILC), particularly helper ILC, in the pathogenesis of multiple sclerosis (MS) is not well understood. Here, we present a comprehensive analysis of peripheral ILC subsets in MS patients prior and after alemtuzumab administration using mass cytometry. Methods Circulating ILC were analysed by mass cytometry in MS patients before and after alemtuzumab. These were compared with non-MS controls. MS-related shifts among ILC immunophenotypes were further elucidated by fast interpolation-based t-SNE (Flt-SNE) dimensionality reduction. Results Neither natural killer (NK) cells nor helper ILC (ILC1, ILC2 and ILC3) levels were altered following alemtuzumab treatment. However, CD56bright NK cell expansions were observed in relapsing patients. MS patients prior to alemtuzumab further displayed proportional shifts from ILC1 to ILC2, with MS-associated decreases in CCR6+ helper ILC proportions. Conclusion CD56bright NK cells during relapse indicate an immediate response to disease reactivation, while CCR6-related shifts among helper ILC suggest altered ILC migration to the CNS during MS.
Collapse
Affiliation(s)
- Florentina Aglas‐Leitner
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia,Medical University of ViennaViennaAustria
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Anette Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Scott N Byrne
- Centre for Immunology and Allergy ResearchThe Westmead Institute for Medical ResearchSydneyNSWAustralia,Faculty of Medicine and Health, School of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia,Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Felix Marsh‐Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia,Liver Injury & Cancer ProgramCentenary InstituteSydneyNSWAustralia,Human Cancer & Viral Immunology LaboratoryThe University of SydneySydneyNSWAustralia
| |
Collapse
|
9
|
Aglas-Leitner FT, Juillard P, Juillard A, Byrne SN, Hawke S, Grau GE, Marsh-Wakefield F. Mass cytometry reveals cladribine-induced resets among innate lymphoid cells in multiple sclerosis. Sci Rep 2022; 12:20411. [PMID: 36437270 PMCID: PMC9701791 DOI: 10.1038/s41598-022-24617-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Here we present a comprehensive mass cytometry analysis of peripheral innate lymphoid cell (ILC) subsets in relapsing/remitting MS (RRMS) patients prior to and after onset of cladribine tablets (CladT). ILC analysis was conducted on CyTOF data from peripheral blood mononuclear cells (PBMC) of MS patients before, 2 and 6 months after onset of CladT, and non-MS controls. Dimensionality reduction was used for immunophenotyping ILC subsets. CladT reduced all ILC subsets, except for CD56bright NK cells and ILC2. Furthermore, CD38+ NK cell and CCR6+ ILC3 were excluded from CladT-induced immune cell reductions. Post-CladT replenishment by immature ILC was noted by increased CD5+ ILC1 proportions at 2 months, and boosted CD38-CD56bright NK cell numbers at 6 months. CladT induce immune cell depletion among ILC but exclude CD56bright NK cells and ILC2 subsets, as well as CD38+ NK cell and CCR6+ ILC3 immunophenotypes. Post-CladT ILC expansions indicate ILC reconstitution towards a more tolerant immune system phenotype.
Collapse
Affiliation(s)
- F. T. Aglas-Leitner
- grid.1013.30000 0004 1936 834XVascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia ,grid.22937.3d0000 0000 9259 8492Medical University of Vienna, Spitalgasse 23, Vienna, Austria
| | - P. Juillard
- grid.1013.30000 0004 1936 834XVascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - A. Juillard
- grid.1013.30000 0004 1936 834XVascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - S. N. Byrne
- grid.452919.20000 0001 0436 7430Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - S. Hawke
- grid.1013.30000 0004 1936 834XVascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia ,Central West Neurology and Neurosurgery, Orange, Australia
| | - G. E. Grau
- grid.1013.30000 0004 1936 834XVascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - F. Marsh-Wakefield
- grid.1013.30000 0004 1936 834XVascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia ,grid.248902.50000 0004 0444 7512Liver Injury & Cancer Group, Centenary Institute, Sydney, Australia ,grid.1013.30000 0004 1936 834XHuman Cancer & Viral Immunology Laboratory, The University of Sydney, Sydney, Australia ,grid.248902.50000 0004 0444 7512Centenary Institute, Sydney, NSW Australia
| |
Collapse
|
10
|
Fouquet G, Rossignol J, Ricard L, Guillem F, Couronné L, Asnafi V, Vavasseur M, Parisot M, Garcelon N, Rieux-Laucat F, Mekinian A, Hermine O. BLNK mutation associated with T-cell LGL leukemia and autoimmune diseases: Case report in hematology. Front Med (Lausanne) 2022; 9:997161. [DOI: 10.3389/fmed.2022.997161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
We present the case of a female patient with a heterozygous somatic BLNK mutation, a T-cell LGL (large granular lymphocyte) leukemia, and multiple autoimmune diseases. Although this mutation seems uncommon especially in this kind of clinical observation, it could represent a new mechanism for autoimmune diseases associated with LGL leukemia. The patient developed several autoimmune diseases: pure red blood cell apalsia, thyroiditis, oophoritis, and alopecia areata. She also presented a T-cell LGL leukemia which required treatment with corticosteroids and cyclophosphamide, with good efficacy. Interestingly, she had no notable infectious history. The erythroblastopenia also resolved, the alopecia evolves by flare-ups, and the patient is still under hormonal supplementation for thyroiditis and oophoritis. We wanted to try to understand the unusual clinical picture presented by this patient. We therefore performed whole-genome sequencing, identifying a heterozygous somatic BLNK mutation. Her total gamma globulin level was slightly decreased. Regarding the lymphocyte subpopulations, she presented a B-cell deficiency with increased autoreactive B-cells and a CD4+ and Treg deficiency. This B-cell deficiency persisted after complete remission of erythroblastopenia and LGL leukemia. We propose that the persistent B-cell deficiency linked to the BLNK mutation can explain her clinical phenotype.
Collapse
|
11
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|