1
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Cunningham JL, Frankovich J, Dubin RA, Pedrosa E, Baykara RN, Schlenk NC, Maqbool SB, Dolstra H, Marino J, Edinger J, Shea JM, Laje G, Swagemakers SMA, Sinnadurai S, Zhang ZD, Lin JR, van der Spek PJ, Lachman HM. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders. Dev Neurosci 2024:1-20. [PMID: 39396515 DOI: 10.1159/000541908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in pediatric acute-onset neuropsychiatric syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. METHODS We analyzed genetic findings obtained from parents and carried out whole-exome sequencing on a total of 17 cases, which included 3 sibling pairs and a family with 4 affected children. RESULTS The DDR genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. CONCLUSION These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.
Collapse
Affiliation(s)
- Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Rheumatology and Immune Behavioral Health Program, Stanford Children's Health and Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert A Dubin
- Center for Epigenomics, Computational Genomics Core, Albert Einstein College of Medicine, New York, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Noelle Cathleen Schlenk
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shahina B Maqbool
- Department of Genetics Epigenetics Shared Facility, Albert Einstein College of Medicine, New York, New York, USA
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacqueline Marino
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacob Edinger
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Julia M Shea
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Gonzalo Laje
- Department of Psychiatry, Permian Basin, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Siamala Sinnadurai
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology and Health Promotion at the School of Public Health Medical Center for Postgraduate Education, Warsaw, Poland
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Ma Z, Lou Y, Wang N, Zhao Y, Zhang S, Zhang M, Li J, Xu Q, He A, Yu S. Absent in Melanoma 2 Mediates Inflammasome Signaling Activation against Clostridium perfringens Infection. Int J Mol Sci 2024; 25:6571. [PMID: 38928277 PMCID: PMC11203860 DOI: 10.3390/ijms25126571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Absent in melanoma 2 (AIM2), a key component of the IFI20X/IFI16 (PYHIN) protein family, is characterized as a DNA sensor to detect cytosolic bacteria and DNA viruses. However, little is known about its immunological role during pathogenic Clostridium perfringens (C. perfringens) infection, an extracellular bacterial pathogen. In a pathogenic C. perfringens gas gangrene model, Aim2-/- mice are more susceptible to pathogenic C. perfringens soft tissue infection, revealing the importance of AIM2 in host protection. Notably, Aim2 deficiency leads to a defect in bacterial killing and clearance. Our in vivo and in vitro findings further establish that inflammasome signaling is impaired in the absence of Aim2 in response to pathogenic C. perfringens. Mechanistically, inflammasome signaling downstream of active AIM2 promotes pathogen control. Importantly, pathogenic C. perfringens-derived genomic DNA triggers inflammasome signaling activation in an AIM2-dependent manner. Thus, these observations uncover a central role for AIM2 in host defense and triggering innate immunity to combat pathogenic C. perfringens infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (Z.M.); (Y.L.); (N.W.); (Y.Z.); (S.Z.); (M.Z.); (J.L.); (Q.X.); (A.H.)
| |
Collapse
|
5
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|