1
|
de Araújo Vieira LF, Lins MP, Porto FL, Smaniotto S, Dos Santos Reis MD. IGF-1 increases survival of CD4 + lineage in a 2D model of thymocyte/thymic stromal cell co-culture. In Vitro Cell Dev Biol Anim 2022; 58:877-885. [PMID: 36401120 DOI: 10.1007/s11626-022-00730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), in addition to its classic effects on cell proliferation and organism growth, has pleiotropic actions on the immune system, particularly on the thymus. Thus, the objective of this study was to evaluate the influence of IGF-1 on molecules involved in the survival of thymocytes in vitro using a co-culture system with thymic stromal cells obtained from C57BL/6 mice. The obtained thymic stroma has contained thymic epithelial cells, macrophages, dendritic cells, fibroblasts, and preserved the expression of the major histocompatibility complex (MHC) molecules. Fresh thymocytes were added to these cultures and the co-culture were treated daily with IGF-1 (100 ng/mL) for 3 days. In this scheme, the viability of the thymocytes was about 70%, either in the control (non-treated cells) or in the IGF-1-treated cultures. It was found that IGF-1 was able to increase the percentage of thymocytes from the CD4+ single-positive (SP) subset. This result was accompanied by an increase in the MHC II expression on thymic stromal cells and an augment on the interleukin-7 receptor (CD127) on the surface of the CD4 SP thymocytes after treatment with IGF-1. Finally, IGF-1 treatment increased the expression of the ThPOK encoding gene Zbtb7b, which is involved in the differentiation of CD4+ SP thymocytes. Our study demonstrates the participation of IGF-1 in the thymocyte/thymic stroma interactions, especially in the extended survival of the CD4+ lineage in the thymus.
Collapse
Affiliation(s)
- Larissa Fernanda de Araújo Vieira
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil
| | - Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil. .,Brazilian National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil.,Brazilian National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil.,Brazilian National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Andersen L, Gülich AF, Alteneder M, Preglej T, Orola MJ, Dhele N, Stolz V, Schebesta A, Hamminger P, Hladik A, Floess S, Krausgruber T, Faux T, Andrabi SBA, Huehn J, Knapp S, Sparwasser T, Bock C, Laiho A, Elo LL, Rasool O, Lahesmaa R, Sakaguchi S, Ellmeier W. The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 + Regulatory T Cells. Cell Rep 2020; 29:4447-4459.e6. [PMID: 31875552 DOI: 10.1016/j.celrep.2019.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
Collapse
Affiliation(s)
- Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Narendra Dhele
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schebesta
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Faux
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Syed Bilal Ahmad Andrabi
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Asta Laiho
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur J Nutr 2015; 56:557-567. [PMID: 26589301 DOI: 10.1007/s00394-015-1100-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. METHODS Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. RESULTS Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. CONCLUSIONS Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.
Collapse
|