1
|
Chakraborty S, Gupta R, Kubatzky KF, Kar S, Kraus FV, Souto-Carneiro MM, Lorenz HM, Kumar P, Kumar V, Mitra DK. Negative impact of Interleukin-9 on synovial regulatory T cells in rheumatoid arthritis. Clin Immunol 2023; 257:109814. [PMID: 37879380 PMCID: PMC7615987 DOI: 10.1016/j.clim.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
In Rheumatoid Arthritis (RA), regulatory T cells (Tregs) have been found to be enriched in the synovial fluid. Despite their accumulation, they are unable to suppress synovial inflammation. Recently, we showed the synovial enrichment of interleukin-9 (IL-9) producing helper T cells and its positive correlation with disease activity. Therefore, we investigated the impact of IL-9 on synovial Tregs in RA. Here, we confirmed high synovial Tregs in RA patients, however these cells were functionally impaired in terms of suppressive cytokine production (IL-10 and TGF-β). Abrogating IL-9/ IL-9 receptor interaction could restore the suppressive cytokine production of synovial Tregs and reduce the synovial inflammatory T cells producing IFN-γ, TNF-α, IL-17. However, blocking these inflammatory cytokines failed to show any effect on IL-9 producing T cells, highlighting IL-9's hierarchy in the inflammatory network. Thus, we propose that blocking IL-9 might dampen synovial inflammation by restoring Tregs function and inhibiting inflammatory T cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ranjan Gupta
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Santanu Kar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Franziska V Kraus
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - M Margarida Souto-Carneiro
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Pankaj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Weng S, Huang L, Cai B, He L, Wen S, Li J, Zhong Z, Zhang H, Huang C, Yang Y, Jiang Q, Liu F. Astragaloside IV ameliorates experimental autoimmune myasthenia gravis by regulating CD4 + T cells and altering gut microbiota. Chin Med 2023; 18:97. [PMID: 37542273 PMCID: PMC10403896 DOI: 10.1186/s13020-023-00798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an antibody-mediated autoimmune disease and its pathogenesis is closely related to CD4 + T cells. In recent years, gut microbiota is considered to play an important role in the pathogenesis of MG. Astragaloside IV (AS-IV) is one of the main active components extracted from Astragalus membranaceus and has immunomodulatory effects. To study the immunomodulatory effect of AS-IV and the changes of gut microbiota on experimental autoimmune myasthenia gravis (EAMG) mice, we explore the possible mechanism of AS-IV in improving MG. METHODS In this study, network pharmacology was utilized to screen the crucial targets of AS-IV in the treatment of MG. Subsequently, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify potential pathways through which AS-IV acts against MG. Furthermore, experimental investigations were conducted to validate the underlying mechanism of AS-IV in MG treatment. Before modeling, 5 mice were randomly selected as the control group (CFA group), and the other 10 were induced to EAMG model. These mice were randomly divided into EAMG group and EAMG + AS-IV group, n = 5/group. In EAMG + AS-IV group, AS-IV was administered by gavage. CFA and EAMG groups were given the same volume of PBS. Body weight, grip strength and clinical symptoms were assessed and recorded weekly. At the last administration, the feces were collected for 16S RNA microbiota analysis. The levels of Treg, Th1 and Th17 cells in spleen and Th1 and Th17 cells in thymus were detected by flow cytometry. The levels of IFN-γ, IL-17 and TGF-β in serum were measured by ELISA. Furthermore, fecal microbial transplantation (FMT) experiments were performed for exploring the influence of changed intestinal flora on EAMG. After EAMG model was induced, the mice were treated with antibiotics daily for 4 weeks to germ-free. Then germ-free EAMG mice were randomly divided into two groups: FMT EAMG group, FMT AS-IV group, n = 3/group. Fecal extractions from EAMG and EAMG + AS-IV groups as gathered above were used to administered daily to the respective groups for 4 weeks. Body weight, grip strength and clinical symptoms were assessed and recorded weekly. The levels of Treg, Th1 and Th17 cells in spleen and Th1 and Th17 cells in thymus were detected at the last administration. The levels of IFN-γ, IL-17 and TGF-β in serum were measured by ELISA. RESULTS The network pharmacology and KEGG pathway analysis revealed that AS-IV regulates T cell pathways, including T cell receptor signaling pathway and Th17 cell differentiation, suggesting its potential in improving MG. Further experimental verification demonstrated that AS-IV administration improved muscle strength and body weight, reduced the level of Th1 and Th17 cells, enhanced the level of Treg cells, and resulted in alterations of the gut microbiota, including changes in beta diversity, the Firmicutes/Bacteroidetes (F/B) ratio, and the abundance of Clostridia in EAMG mice. We further conducted FMT tests and demonstrated that the EAMG Abx-treated mice which were transplanted the feces of mice treated with AS-IV significantly alleviated myasthenia symptoms, reduced Th1 and Th17 cells levels, and increased Treg cell levels. CONCLUSION This study speculated that AS-IV ameliorates EAMG by regulating CD4 + T cells and altering the structure and species of gut microbiota of EAMG.
Collapse
Affiliation(s)
- Senhui Weng
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Linwen Huang
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Bingxing Cai
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Long He
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Shuting Wen
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Jinghao Li
- Department of Traditional Chinese Medicine of the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528000, China
| | - Zhuotai Zhong
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Haiyan Zhang
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Chongyang Huang
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Yunying Yang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Qilong Jiang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China.
| | - Fengbin Liu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China.
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2, Helongqi Road, Renhe Town, Baiyun District, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Chakraborty S, Schneider J, Mitra DK, Kubatzky KF. Mechanistic insight of interleukin-9 induced osteoclastogenesis. Immunology 2023; 169:309-322. [PMID: 36732282 PMCID: PMC7615986 DOI: 10.1111/imm.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-9 is an emerging player in the pathogenesis of various chronic inflammatory diseases including bone disorders like rheumatoid arthritis (RA) and psoriatic arthritis. Recently, IL-9 was shown to enhance the osteoclast formation and their function in RA. However, the mechanisms by which IL-9 influences osteoclastogenesis are not known. Therefore, in this study we aimed to unravel the direct and indirect ways by which IL-9 can influence osteoclast formation. We used mouse bone marrow precursor cells for checking the effect of IL-9 on osteoclast differentiation and its function. Next, IL-9 induced signalling pathway were checked in the process of osteoclastogenesis. T cells play an important role in enhancing osteoclastogenesis in inflammatory conditions. We used splenic T cells to understand the impact of IL-9 on the functions of T effector (Teff) and regulatory T (Treg) cells. Furthermore, the effect of IL-9 mediated modulation of the T cell response on osteoclasts was checked using a coculture model of T cells with osteoclast precursors. We showed that IL-9 enhanced osteoclast formation and its function. We found that IL-9 activates STAT3, P38 MAPK, ERK1/2, NFκB and we hypothesize that it mediates the effect on osteoclastogenesis by accelerating mitochondrial biogenesis. Additionally, IL-9 was observed to facilitate the functions of pro-osteoclastogenic IL-17 producing T cells, but inhibits the function of anti-osteoclastogenic Treg cells. Our observations suggest that IL-9 can influence osteoclastogenesis directly by modulating the signalling cascade in the precursor cells; indirectly by enhancing IL-17 producing T cells and by reducing the functions of Treg cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jakob Schneider
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Huang X, Ran H, Li Y, Ma Q, Ou C, Qiu L, Feng H, Liu W. Leflunomide combined with low-dose prednisone inhibits proinflammatory T cells responses in myasthenia gravis patients. Front Neurol 2022; 13:961628. [PMID: 36164461 PMCID: PMC9508276 DOI: 10.3389/fneur.2022.961628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
We previously found that leflunomide combined with low-dose prednisone rapidly improved the clinical symptoms of myasthenia gravis (MG), but we had not investigated the mechanism of this phenomenon. This study documents the effect of leflunomide combined with low-dose prednisone on pro-inflammatory T cells in MG patients. We compared 32 treated MG patients with 18 controls. We collected peripheral blood before treatment and 4, 8, and 12 weeks after treatment. We extracted peripheral blood mononuclear cells (PBMCs) and stimulated them with phorbol 12-myristate 13-acetate (PMA) + ionomycin and quantified IFN-γ, IL-4, IL-17, and IL-9 secretion through ELISA. We quantified T helper (Th) cells Th1 (CD3+CD4+IFN-γ+), Th2 (CD3+CD4+IL-4+), Th17 (CD3+CD4+IL-17A+) and Th9 (CD3+CD4+IL-9+) among PBMCs. The treatment significantly reduced IL-17 and IL-9 secretion in peripheral blood but did not affect IFN-γ levels. Significant decreases in IL-17 and IL-9 appeared at week 12, and the trend of change was similar to that of the MG composite score. Flow cytometry indicated that leflunomide combined with low-dose prednisone significantly reduced the frequency of Th1 and Th17 cells. These findings demonstrate the potential of this treatment as an alternative immunosuppressive therapy for MG.
Collapse
Affiliation(s)
- Xin Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingkai Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Changyi Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Li Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Huiyu Feng
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- Weibin Liu
| |
Collapse
|
5
|
Ouyang S, Yin W, Zeng Q, Li B, Zhang J, Duan W, Li Y, Liang Y, Wang J, Tan H, Yang H. Lymphoplasma Exchange Improves Myasthenia Gravis Exacerbations: A Retrospective Study in a Chinese Center. Front Immunol 2022; 13:757841. [PMID: 35514988 PMCID: PMC9063637 DOI: 10.3389/fimmu.2022.757841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background Lymphoplasma exchange (LPE), a technique combining plasma exchange with leukapheresis, is emerging as promising treatment for autoimmune diseases. Data on the efficacy and safety of LPE in myasthenia gravis (MG) therapy are scarce. In this study, we aimed to comprehensively review the clinical efficacy, safety, and immunological characteristics of LPE therapy in MG patients. Study Design and Methods A Chinese cohort of 276 generalized MG patients in state of exacerbation, including impeding crisis, myasthenia crisis, and preparation for thoracic exsection between January 2014 and December 2020, were evaluated in this study. Results A total of 276 patients with a median age of 45.5 ± 16.7 years underwent a total of 635 LPE sessions. Clinical scales of Quantitative Myasthenia Gravis (QMG) scores, Myasthenia Gravis Specific Manual Muscle Testing (MMT) scores, activities of daily living (ADL) scores, and quality of life (QOL) scores were improved during 4 weeks’ follow-up. Adverse effects occurred in 20 out of 276 patients, with 14 patients having one adverse event each. Independent predictive factors for good response to LPE therapy were symptom onset before LPE therapy ≤3 days and age on LPE therapy <50 years of age. LPE decreased the serum levels of antibodies, immunoglobulins, and complements 4 weeks after the first replacement, with decreased levels of interleukin (IL)-17A and interferon (IFN)-γ and increased level of IL-10. Conclusion LPE is an effective treatment for MG patients in state of exacerbation and preparation for thymectomy. Early use of LPE on early-onset MG may have good therapeutic effects. The potential mechanism for LPE is the polarization of cytokines from IL-17A, IFN-γ, into IL-10.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Medical Center of Neurology, The First Hospital of Changsha City, South China University, Changsha, China
| | - Weifan Yin
- The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Huan Yang, ; Weifan Yin,
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bijuan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Weiwei Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liang
- Medical Center of Neurology, The First Hospital of Changsha City, South China University, Changsha, China
| | - Jiaqi Wang
- Medical Center of Neurology, The First Hospital of Changsha City, South China University, Changsha, China
| | - Hong Tan
- Medical Center of Neurology, The First Hospital of Changsha City, South China University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Huan Yang, ; Weifan Yin,
| |
Collapse
|
6
|
Th9 Cells in Peripheral Blood Increased in Patients with Immune-Related Pancytopenia. J Immunol Res 2020; 2020:6503539. [PMID: 32455141 PMCID: PMC7222599 DOI: 10.1155/2020/6503539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background Immune-related pancytopenia (IRP) is a kind of autoimmune disease mediated by autoantibodies in bone marrow. T helper 9 (Th9) cell is a new subset of T cell discovered recently, which mainly expresses cytokine interleukin-9 (IL-9) to exert immune function. Th9 cells are associated with a variety of inflammatory diseases, but the role of Th9 cells in IRP remains unclear. Methods Fifty patients with IRP and 20 healthy controls were enrolled. The percentage of Th9 cells was detected by flow cytometry (FCM) and ELISA. CD4+ lymphocytes were sorted by magnetic beads, and the mRNA expression levels of Th9 cells related transcription factors PU.1 and BATF were detected by RT-PCR. Results The percentage of Th9 cells in CD3+CD4+ cells was 2.73 ± 1.96% in the untreated group, which was significantly higher than those in the remission group (1.21 ± 0.86%) (p < 0.01) and the control group (0.68 ± 0.40%) (p < 0.001). And that in the remission group was significantly higher than that in the control group (p < 0.05). The level of IL-9 in the untreated group was 183.91 ± 112.42 pg/mL, which was significantly higher than that in the remission group (105.96 ± 64.79 pg/mL) (p < 0.01) and control group (56.03 ± 14.49 pg/mL) (p < 0.001). That in the remission group was also significantly higher than that in the control group (p < 0.01). They were negatively correlated with hemoglobin, red blood cell, white blood cell, and platelet counts and positively correlated with the percentage of CD19+B cells and CD5+CD19+/CD19+B cells, respectively. The mRNA expression levels of PU.1 and BATF in IRP patients were higher than those in controls (p < 0.05). Conclusions The percentage of Th9 cells in the peripheral blood and the level of IL-9 in the serum of patients with IRP were increased, which was related to the severity of the disease.
Collapse
|
7
|
Ye D, Wang Z, Xu Y, Ye J, Wang M, Liu J, Zhang J, Zhao M, Chen J, Wan J. Interleukin-9 aggravates doxorubicin-induced cardiotoxicity by promoting inflammation and apoptosis in mice. Life Sci 2020; 255:117844. [PMID: 32464124 DOI: 10.1016/j.lfs.2020.117844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023]
Abstract
AIMS Interleukin (IL) 9 is a pleiotropic cytokine, and recent studies have demonstrated that IL-9 is associated with several cardiovascular diseases, via regulation of the inflammatory response. Doxorubicin (DOX) is known to induce severe cardiac injury and dysfunction by enhancing inflammation. This study aimed to investigate the role of IL-9 in DOX-induced cardiotoxicity. MATERIALS AND METHODS DOX was used to induce cardiac dysfunction and the expression of IL-9 in the murine cardiac tissues was measured. The mice were intraperitoneally injected with recombinant mouse IL-9 (rmIL-9) or anti-IL-9 neutralizing antibody (IL-9nAb) for investigating the effect of IL-9 on DOX-induced cardiac injury and dysfunction. The messenger ribonucleic acid (mRNA) expression levels of the pro-inflammatory cytokines were determined in each group by quantitative real-time polymerase chain reaction (RT-qPCR). The effect of rmIL-9 or IL-9nAb on DOX-induced apoptosis was determined both in vivo and vitro. KEY FINDINGS IL-9 levels significantly increased in the heart following DOX injection. Cardiac injury and dysfunction were induced by DOX, and treatment with IL-9nAb significantly alleviated DOX-induced injury, whereas rmIL-9 administration aggravated the cardiac damage. IL-9nAb decreased the expression of pro-inflammatory cytokines in the DOX-treated mice, while rmIL-9 administration increased the levels of pro-inflammatory cytokines. IL-9nAb reduced DOX-induced myocardial apoptosis, whereas rmIL-9 administration produced the opposite results. Additionally, IL-9nAb mitigated the DOX-induced apoptosis in H9C2 cells, while administration of rmIL-9 produced the opposite effect. SIGNIFICANCE Our results demonstrated that IL-9 aggravated DOX-induced cardiac injury and dysfunction by promoting the inflammatory response and cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiangbin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
8
|
Aria H, Kalani M, Hodjati H, Doroudchi M. Different cytokine patterns induced by Helicobacter pylori and Lactobacillus acidophilus extracts in PBMCs of patients with abdominal aortic aneurysm. Comp Immunol Microbiol Infect Dis 2020; 70:101449. [PMID: 32126431 DOI: 10.1016/j.cimid.2020.101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 12/28/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative inflammatory disease with unknown etiology. AAA is characterized by abdominal aortic dilatation more than 3 cm and is often asymptomatic, but the rupture of aneurysm can lead to death. Age, smoking and male sex are major predisposing factors of AAA. This study compares the effect of Helicobacter (H.) pylori and Lactobacillus (L.) acidophilus on the cytokine profile of PBMCs of 5 men with abdominal aortic aneurysm (AAA) and 5 men with normal/insignificant angiography, CT-Scan and ultrasonography results in the single-culture and in the co-culture with HUVECs. IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17 F, IL-21, IL-22, IFN-γ and TNF-α were measured in culture supernatants using a commercial fluorescent-labeled-bead assay. In general, CagA+ H. pylori-extract induced higher production of IFN-γ, IL-13 and IL-21 by PBMCs. Treatment of patients' PBMCs with CagA+H. pylori-extract induced Th2 cytokines while treatment of controls' PBMCs with CagA+H. pylori-extract increased Th1 cytokines. In the co-culture, however, patients' PBMCs produced Th1 cytokines irrespective of extract treatment, while controls' PBMCs produced Th2 cytokines and decreased IL-10. CagA+ H. pylori- as well as L. acidophilus-extract induced higher levels of IL-9 by controls' PBMCs in co-culture with HUVECs than patients (P = 0.05 and P = 0.01). The cytokine pattern of PBMCs induced by CagA+ H. pylori- and L. acidophilus-extracts in the co-culture with HUVECs shows differences in AAA patients and in comparison to controls. Decreased secretion of IL-9, IL-21 and IL-22 by PBMCs of patients treated with CagA+ H. pylori extract in co-culture, as opposed to non-AAA controls may indicate the active role ECs play in AAA. Simultaneous production of IL-10 and Th1 cytokines in patients and pronounced Th2 cytokines in controls in response to both bacteria may point to the inherent differences between patients and controls, which need further investigation.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Prof. Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Hodjati
- Department of Vascular Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Zhao J, Jing J, Zhao W, Li X, Hou L, Zheng C, Kong Q, Li W, Yao X, Chang L, Li H, Mu L, Wang G, Wang J. Osteopontin exacerbates the progression of experimental autoimmune myasthenia gravis by affecting the differentiation of T cell subsets. Int Immunopharmacol 2020; 82:106335. [PMID: 32109680 DOI: 10.1016/j.intimp.2020.106335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
Abstract
Osteopontin (OPN) is a multifunctional extracellular matrix phosphoprotein that has a specific and complicated structure, and contributes to numerous physiological and pathological activities. The mechanism of OPN in many diseases has been confirmed; however, the role of OPN in myasthenia gravis (MG) remains unclear. In this study, we recombined rat OPN protein in vitro, and assessed how OPN affects the development of autoimmunity using an experimental autoimmune myasthenia gravis (EAMG) rat model. The results showed that the concentration of OPN in serum was up-regulated. Both mRNA and protein levels in splenocytes increased in the EAMG model. OPN treatment in vitro strongly promoted the differentiation of Th1 cells, and inhibited the differentiation of Treg cells. Intraperitoneal injection of OPN revealed the early incidence of EAMG, and more serious disease. This effect was accompanied by an increased percentage of Th1 cells. In conclusion, OPN likely exacerbates the pathogenesis of EAMG by promoting the differentiation of Th1 cells and inhibiting the differentiation of Treg cells.
Collapse
Affiliation(s)
- Jiarui Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jia Jing
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Xinrong Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lixuan Hou
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Chunfeng Zheng
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar City, Heilongjiang 161000, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Wenjin Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lulu Chang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China; Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China; Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China.
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
10
|
Sugimoto N, Suzukawa M, Nagase H, Koizumi Y, Ro S, Kobayashi K, Yoshihara H, Kojima Y, Kamiyama-Hara A, Hebisawa A, Ohta K. IL-9 Blockade Suppresses Silica-induced Lung Inflammation and Fibrosis in Mice. Am J Respir Cell Mol Biol 2019; 60:232-243. [PMID: 30240278 DOI: 10.1165/rcmb.2017-0287oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recapitulative animal models of idiopathic pulmonary fibrosis (IPF) and related diseases are lacking, which inhibits our ability to fully clarify the pathogenesis of these diseases. Although lung fibrosis in mouse models is often induced by bleomycin, silica-induced lung fibrosis is more sustainable and more progressive. Therefore, in this study, we sought to elucidate the mediator(s) responsible for the pathogenesis of lung fibrosis, through the use of a mouse model of silica-induced lung fibrosis. With a single nasal administration of 16 mg of silica, lung inflammation (assessed by elevated cellular components in the BAL fluids [BALFs]) and lung fibrosis (assessed by lung histology and lung hydroxyproline levels) were induced and sustained for as long as 24 weeks. Of the mediators measured in the BALFs, IL-9 was characteristically elevated gradually, and peaked at 24 weeks after silica administration. Treatment of silica-challenged mice with anti-IL-9-neutralizing antibody inhibited lung fibrosis, as assessed by lung hydroxyproline level, and suppressed the levels of major mediators, including IL-1β, IL-6, IL-12, CCL2, CXCL1, and TNF-α in BALFs. Moreover, human lung specimens from patients with IPF have shown high expression of IL-9 in alveolar macrophages, CD4-positive cells, and receptors for IL-9 in airway epithelial cells. Collectively, these data suggest that IL-9 plays an important role in the pathogenesis of lung fibrosis in diseases such as IPF.
Collapse
Affiliation(s)
- Naoya Sugimoto
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Maho Suzukawa
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Nagase
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Yuta Koizumi
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Shoki Ro
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Konomi Kobayashi
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Hisanao Yoshihara
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Yasuhiro Kojima
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Asae Kamiyama-Hara
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Akira Hebisawa
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Ken Ohta
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Lack of association between serum IL-9 levels and Behçet’s disease. Immunol Lett 2019; 211:23-27. [DOI: 10.1016/j.imlet.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022]
|
12
|
Song J, Xi JY, Yu WB, Yan C, Luo SS, Zhou L, Zhu WH, Lu JH, Dong Q, Xiao BG, Zhao CB. Inhibition of ROCK activity regulates the balance of Th1, Th17 and Treg cells in myasthenia gravis. Clin Immunol 2019; 203:142-153. [PMID: 31078707 DOI: 10.1016/j.clim.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023]
Abstract
Aberrant ROCK activation has been found in patients with several autoimmune diseases, but the role of ROCK in myasthenia gravis (MG) has not yet been clearly investigated. Here, we demonstrated that ROCK activity was significantly higher in peripheral blood mononuclear cells (PBMCs) from MG patients. ROCK inhibitor Fasudil down-regulated the proportions of Th1 and Th17 cells in PBMCs of MG patients in vitro. Intraperitoneal injection of Fasudil ameliorated the severity of experimental autoimmune myasthenia gravis (EAMG) rats and restored the balance of Th1/Th2/Th17/Treg subsets. Furthermore, Fasudil inhibited the proliferation of antigen-specific Th1 and Th17 cells, and inhibited CD4 + T cells differentiated into Th1 and Th17 through decreasing phosphorylated Stat1 and Stat3, but promoted Treg cell differentiation through increasing phosphorylated Stat5. We conclude that dysregulated ROCK activity may be involved in the pathogenic immune response of MG and inhibition of ROCK activity might serve as a novel treatment strategy for MG.
Collapse
Affiliation(s)
- Jie Song
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jian-Ying Xi
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Wen-Bo Yu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Su-Shan Luo
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Wen-Hua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jia-Hong Lu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chong-Bo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
13
|
Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. Int J Mol Sci 2019; 20:E2113. [PMID: 31035677 PMCID: PMC6522352 DOI: 10.3390/ijms20092113] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin-9 (IL-9) is a pleiotropic cytokine and was primarily studied in the context of T helper 2 (TH2)-associated immuno-pathological conditions such as asthma and parasitic infections. There was a paradigm shift in the biology of IL-9 after the recent discovery of TH9 cells, a new subtype of TH cells which secrete IL-9 in copious amounts. This has resulted in renewed interest in this cytokine, which was neglected since discovery because it was considered it to be just another TH2 cytokine. Recent studies have shown that it has multiple cellular sources and is critically involved in the immune-pathogenesis of inflammatory diseases and in guarding immune tolerance. In this review, we will discuss its discovery, gene organization, cellular sources, and signaling pathways. Especially, we will give an update on the recent development regarding its relevance in the immune pathogenesis of human diseases.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 1100029, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 1100029, India.
| |
Collapse
|
14
|
Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, Wang Y, Deng Z, Chen C, Hu X, Peng L, Qiu W, Lu Z. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 2019; 33:4376-4387. [PMID: 30694693 DOI: 10.1096/fj.201801595rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Astrocytes mediate the destruction of the blood-brain barrier (BBB) during ischemic stroke (IS). IL-9 is a pleiotropic cytokine that we previously found to be highly expressed in peripheral blood mononuclear cells from patients with IS, and the presence of IL-9 receptors on astrocytes has been reported in the literature. Here, we detected the effect of IL-9 on astrocytes using an anti-IL-9-neutralizing antibody to treat rats with experimental stroke. Supernatants from astrocytes treated with or without oxygen-glucose deprivation and/or IL-9 were incubated with bEnd.3 cell monolayers after blocking the IL-9 receptor on the endothelium. Immunofluorescence staining and Western blot analyses were conducted to observe the change in tight junction proteins (TJPs) in bEnd.3 cells as well as the level of VEGF-A and possible signal pathways in astrocytes. We also applied middle cerebral artery occlusion (MCAO) models to determine the effect of anti-IL-9-neutralizing antibodies on IS. As a result, astrocyte-conditioned medium treated with IL-9 aggravated the disruption of the BBB accomplished by the degradation of TJPs in endothelial cells. In addition, IL-9 increased the level of VEGF-A in astrocytes, and blocking the effect of VEGF-A reversed the breakdown of the BBB. In the MCAO model, anti-IL-9-neutralizing antibody reduced the infarct volume and BBB destruction. Mechanistically, the anti-IL-9-neutralizing antibody repaired the damaged TJPs (zonula occludens 1, occludin, and claudin-5) and induced a decrease in VEGF-A expression in ischemic lateral brain tissue. In contrast, a local injection of recombinant murine IL-9 to the brain resulted in a marked up-regulation of VEGF-A in the striatum. In conclusion, anti-IL-9-neutralizing antibody can reduce the severity of IS partially by alleviating the destruction of the BBB via down-regulation of astrocyte-derived VEGF-A. This finding suggests that targeting IL-9 or VEGF-A could provide a new direction for the treatment of IS.-Tan, S., Shan, Y., Lin, Y., Liao, S., Zhang, B., Zeng, Q., Wang, Y., Deng, Z., Chen, C., Hu, X., Peng, L., Qiu, W., Lu, Z. Neutralization of IL-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A.
Collapse
Affiliation(s)
- Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilong Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinyao Lin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siyuan Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Zeng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Yao X, Zhao J, Kong Q, Xie X, Wang J, Sun B, Xu L, Mu L, Li H. Exogenous IL-9 Ameliorates Experimental Autoimmune Myasthenia Gravis Symptoms in Rats. Immunol Invest 2018; 47:712-724. [PMID: 29944018 DOI: 10.1080/08820139.2018.1487976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine involved in protective immunity or immunopathology depending on the microenvironment and specific disease settings. Our early study determined that IL-9 and Th9 cells participate in and promote the progression of experimental autoimmune myasthenia gravis (EAMG). The data from this study showed that exogenous recombinant rat IL-9 (rrIL-9) acted as an IL-9 receptor antagonist, reduced the incidence of EAMG in rats, alleviated the severity of the disease, and reduced the anti-acetylcholine receptor (AChR) IgG antibody levels by altering the Th-subset distribution. These data suggest that administration of rrIL-9 may provide a novel therapeutic strategy against MG or related autoimmune diseases. Abbreviations: 2-Mercaptoethanol (2-ME); antibodies (Abs); ?-bungarotoxin (?-BTX); acetylcholine receptor (AChR); airway hyper-reactivity (AHR); allophycocyanin-conjugated (APC); antigen presenting cells (APCs); complete Freund's adjuvant (CFA); Cyanine dye 3 (Cy3); dendritic cells (DCs); experimental autoimmune encephalomyelitis (EAE); experimental autoimmune myasthenia gravis (EAMG); flow cytometry (FACS); fetal bovine serum (FBS); fetal calf serum (FCS); Fluorescein isothiocyanate (FITC); gamma chain (?c); intraperitoneally (i.p.); Incomplete Freund's adjuvant (IFA); interferon (IFN); immunoglobulin (Ig); Interleukin (IL); Janus kinase (JAK); myasthenia gravis (MG); Mononuclear cells (MNC); neuromuscular junctions (NMJ); optical density (OD); ovalbumin (OVA); phosphate-buffered saline (PBS); phycoerythrin (PE); Peridinin chlorophyll protein complex (Percp); Rat AChR ? subunit (R-AChR97-116); Recombinant Rat (rr); room temperature (RT); signal transducer and activator of transcription (STAT); T helper cells (Th).
Collapse
Affiliation(s)
- Xiuhua Yao
- a Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases , Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital , Tianjin , China.,b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Jiarui Zhao
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Qingfei Kong
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Xiaoli Xie
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China.,c Laboratory of Molecular Genetics of Aging and Tumor, Medical School , Kunming University of Science and Technology , Kunming , Yunnan , China
| | - Jinghua Wang
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Bo Sun
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Lixia Xu
- a Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases , Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital , Tianjin , China
| | - Lili Mu
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| | - Hulun Li
- b Department of Neurobiology, Heilongjiang Province Key Lab of Neurobiology , Harbin Medical University , Harbin , Heilongjiang , China
| |
Collapse
|
16
|
Chowdhury K, Kumar U, Das S, Chaudhuri J, Kumar P, Kanjilal M, Ghosh P, Sircar G, Basyal RK, Kanga U, Bandyopadhaya S, Mitra DK. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis Res Ther 2018; 20:18. [PMID: 29382374 PMCID: PMC5791733 DOI: 10.1186/s13075-017-1505-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Background Role of Th9 cells and interleukin-9 (IL-9) in human autoimmune diseases such as psoriasis and ulcerative colitis has been explored only very recently. However, their involvement in human rheumatoid arthritis (RA) is not conclusive. Pathogenesis of RA is complex and involves various T cell subsets and neutrophils. Here, we aimed at understanding the impact of IL-9 on infiltrating immune cells and their eventual role in synovial inflammation in RA. Methods In vitro stimulation of T cells was performed by engagement of anti-CD3 and anti-CD28 monoclonal antibodies. Flow cytometry was employed for measuring intracellular cytokine, RORγt in T cells, evaluating apoptosis of neutrophils. ELISA was used for measuring soluble cytokine, Western blot analysis and confocal microscopy were used for STAT3 phosphorylation and nuclear translocation. Results We demonstrated synovial enrichment of Th9 cells and their positive correlation with disease activity (DAS28-ESR) in RA. Synovial IL-9 prolonged the survival of neutrophils, increased their matrix metalloprotienase-9 production and facilitated Th17 cell differentiation evidenced by induction of transcription factor RORγt and STAT3 phosphorylation. IL-9 also augmented the function of IFN-γ + and TNF-α + synovial T cells. Conclusions We provide evidences for critical role of IL-9 in disease pathogenesis and propose that targeting IL-9 may be an effective strategy to ameliorate synovial inflammation in RA. Inhibiting IL-9 may have wider impact on the production of pathogenic cytokines involved in autoimmune diseases including RA and may offer better control over the disease. Electronic supplementary material The online version of this article (10.1186/s13075-017-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaustav Chowdhury
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Uma Kumar
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Soumabha Das
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Jaydeep Chaudhuri
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), Kolkata, India
| | - Prabin Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Maumita Kanjilal
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Parashar Ghosh
- Rheumatology Center, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata, India
| | - Geetabali Sircar
- Rheumatology Center, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata, India
| | - Ravi Kiran Basyal
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Santu Bandyopadhaya
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), Kolkata, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India.
| |
Collapse
|
17
|
Gu ZW, Wang YX, Cao ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model. Oncotarget 2017; 8:14314-14324. [PMID: 28187441 PMCID: PMC5362408 DOI: 10.18632/oncotarget.15177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
A novel independent Th-cell subset, characterized by high expression of interleukin (IL)-9, has been recognized as the "Th9" subset. Although Th9 cells are important in many diseases, their contribution to allergic rhinitis (AR) remains unclear. We therefore first determined whether Th9 cells were present in a mouse model of AR. We then investigated the their involvement in the distribution of CD4+ T-cell subsets and the symptoms of AR by treating mice with anti-IL-9 antibodies (Abs). Anti-IL-9 Abs were administered intranasally during rechallenge of ovalbumin (OVA)-induced AR in BALB/c mice. We measured nasal rubbing motion, sneezing and eosinophils, as well as the Th1 (Th1 cell percentage, Ifn-γ mRNA/protein, T-bet mRNA), Th2 (Th2 cell percentage, Il-4 mRNA/protein, Gata3 mRNA), Th9 (Th9 cell percentages Il-9 mRNA/protein, PU.1 and Irf4 mRNA), Th17 (Th17 cell percentage, Il-17 mRNA/protein, Rorγt mRNA), and Treg (Treg cell percentage, Foxp3 mRNA) responses in the nasal mucosa. Treatment with anti-IL-9 Abs markedly reduced nasal rubbing, sneezing, eosinophil infiltration, and Th2, Th9, and Th17 responses, and increased the Treg response. Our findings emphasize the importance of IL-9/Th9 in the pathogenesis of AR, and suggest that anti-IL-9 Ab treatment may be an effective therapeutic strategy for AR.
Collapse
Affiliation(s)
- Zhao Wei Gu
- Department of Otorhinolaryngology, China Medical University affiliated Shengjing Hospital, Shenyang, Liaoning, China
| | - Yun Xiu Wang
- Hematological Laboratory, China Medical University Affiliated Shengjing Hospital, Shenyang, Liaoning, China
| | - Zhi Wei Cao
- Department of Otorhinolaryngology, China Medical University affiliated Shengjing Hospital, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Peng Z, Jiang S, Wu M, Zhou X, Wang Q. Expression and role of interleukin-9 in Vogt-Koyanagi-Harada disease. Mol Vis 2017; 23:538-547. [PMID: 28761327 PMCID: PMC5534488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/28/2017] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Vogt-Koyanagi-Harada (VKH) disease is a systemic autoimmune disease that can lead to blindness. This study was designed to investigate whether interleukin (IL)-9 plays a role in the development of VKH disease. METHODS IL-9, IL-17, and interferon (IFN)-γ levels, present in the supernatants of cultured peripheral blood mononuclear cells (PBMCs) and CD4+T cells, were assessed with enzyme-linked immunosorbent assay. IL-9 mRNA expression in PBMCs was measured with real-time quantitative PCR. The proliferation of PBMCs in response to different doses of recombinant human IL-9 (rIL-9) was measured using the Cell Counting Kit-8 assay. RESULTS IL-9 mRNA levels in PBMCs were statistically significantly elevated in patients with active VKH disease compared to those in patients with inactive VKH disease (p<0.05) and normal controls (p<0.05). Statistically significantly higher expression of IL-9 was observed in the supernatants of stimulated PBMCs (p<0.01) and CD4+ T cells (p<0.01) from patients with active VKH disease compared to that in cells from patients with inactive VKH disease and normal controls. rIL-9 at a concentration of 100 ng/ml did not induce proliferation of PBMCs (p>0.05). After the PBMCs and CD4+ T cells were stimulated with rIL-9 (100 ng/ml), the secretion of IL-17 was increased statistically significantly (p<0.05), whereas the level of IFN-γ was not statistically significantly altered (p>0.05). CONCLUSIONS These findings suggest that IL-9 is involved in the pathogenesis of VKH disease, and that IL-9 might also enhance the inflammatory response by increasing the secretion of IL-17, an established proinflammatory cytokine in VKH disease. Manipulation of IL-9 could represent a novel option for the treatment of VKH disease.
Collapse
|
19
|
Shin JH, Kim DH, Kim BY, Kim SW, Hwang SH, Lee J, Kim SW. Anti-Interleukin-9 Antibody Increases the Effect of Allergen-Specific Immunotherapy in Murine Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:237-246. [PMID: 28293930 PMCID: PMC5352575 DOI: 10.4168/aair.2017.9.3.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Purpose Interleukin (IL)-9 induces allergic responses; however, the roles of anti-IL-9 antibody in the induction of tolerance remain unclear. This study investigated the effects of anti-IL-9 antibody on oral tolerance (OT) in a mouse model of allergic rhinitis (AR). Methods BALB/c mice were divided into 4 groups: the control, AR, OT, and OT with anti-IL-9 antibody (OT+IL9AB) groups. Ovalbumin (OVA) was used for sensitization and challenge. Mice in the OT and OT+IL9AB groups were fed OVA for immunotherapy. During immunotherapy, OT+IL9AB mice were injected with anti-IL-9 antibody. Allergic symptoms, tissue eosinophil counts, and serum OVA-specific immunoglobulin E (IgE) were measured. The mRNA expressions of cytokines and transcription factors of T cells of nasal mucosa were determined by real-time polymerase chain reaction (PCR). The protein levels of GATA3, ROR-γt, and Foxp3 in nasal mucosa were determined by Western blot. CD4+CD25+Foxp3+ T cells in the spleen were analyzed by flow cytometry. Results Administration of anti-IL-9 antibody decreased allergic symptoms, OVA-specific IgE levels, and eosinophil counts. In addition, it inhibited T-helper (Th) 2 responses, but had no effect on Th1 responses. Protein levels of ROR-γt and mRNA levels of PU.1 and ROR-γt were reduced by anti-IL-9 antibody. Anti-IL-9 antibody increased Foxp3 and IL-10 mRNA expression, Foxp3 protein, and induction of CD4+CD25+Foxp3+ T cells. Conclusions Anti-IL-9 antibody decreased allergic inflammation through suppression of Th2 and Th17 cells. Anti-IL-9 antibody enhanced the tolerogenic effects of regulatory T cells. These results suggest that anti-IL-9 antibody might represent a potential therapeutic agent for allergen immunotherapy in patients with uncontrolled allergic airway disease.
Collapse
Affiliation(s)
- Ji Hyeon Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Boo Young Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joohyung Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Whan Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
20
|
Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol 2016; 39:79-87. [DOI: 10.1007/s00281-016-0604-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023]
|
21
|
Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. Int J Gen Med 2016; 9:53-64. [PMID: 27019601 PMCID: PMC4786081 DOI: 10.2147/ijgm.s88552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease caused by the immune attack of the neuromuscular junction. Antibodies directed against the acetylcholine receptor (AChR) induce receptor degradation, complement cascade activation, and postsynaptic membrane destruction, resulting in functional reduction in AChR availability. Besides anti-AChR antibodies, other autoantibodies are known to play pathogenic roles in MG. The experimental autoimmune MG (EAMG) models have been of great help over the years in understanding the pathophysiological role of specific autoantibodies and T helper lymphocytes and in suggesting new therapies for prevention and modulation of the ongoing disease. EAMG can be induced in mice and rats of susceptible strains that show clinical symptoms mimicking the human disease. EAMG models are helpful for studying both the muscle and the immune compartments to evaluate new treatment perspectives. In this review, we concentrate on recent findings on EAMG models, focusing on their utility and limitations.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Alessandra Consonni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| |
Collapse
|