1
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
2
|
Abdelsalam M, Zaki MES, Abo El-Kheir NY, Salama MF, Osman AOBS. Study of MicroRNA-124 in Patients with Lupus Nephritis. Endocr Metab Immune Disord Drug Targets 2024; 24:1180-1185. [PMID: 38317459 DOI: 10.2174/0118715303250919231010073608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 08/06/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lupus nephritis is associated with a six-fold increase in mortality compared with the general population. MicroRNAs studies revealed that increased MicroRNA -21 and MicroRNA -155 levels represent risk factors for active LN patients. MicroRNAs can be used as biomarkers in the diagnosis of clinical stages of LN. OBJECTIVES The present study aimed to determine the level of miR-124 in patients with lupus nephritis by reverse transcriptase real-time polymerase chain reaction compared to healthy control and correlate its levels with biochemical findings in those patients. METHODS The study was a case-control study that included fifty patients with lupus nephritis in addition to fifty healthy controls. Blood samples from the participants were subjected to the determination of serological markers of SLE. Moreover, real-time PCR was used for the determination of miR-124. RESULTS The comparison of Micro-RNA124 between patients and control subjects revealed a statistically significant decrease in Micro-RNA124 in patients (1.193 ± 0.56) compared to the control (3.36 ± 0.50, p <0.001); the comparison of the level of MicroRNA 124 in the patients with different clinical and serological findings of SLE revealed a significant decrease in the level of MicroRNA 124 in patients with muscular findings (1.02 ± 0.5) compared to the patients with negative manifestations (1.47 ± 0.5, p =0.005). CONCLUSION In the present study, a comparison of MicroRNA-124 in LN patients with different stages compared to normal control showed a statistically significant decrease in Micro-RNA124 in patients with lupus nephritis p <0.001 with significant correlation to the patients' different clinical and serological findings of SLE. Therefore, it may be used as a new noninvasive therapeutic approach to monitor response to therapy, predict relapses, and identify the degree of the activity of the disease or the progression to the chronic stage.
Collapse
Affiliation(s)
- Mostafa Abdelsalam
- Department of Internal Medicine, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt and Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Mona Foda Salama
- Department of Medical Microbiology and Immunology-Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
4
|
Portillo JAC, Yu JS, Vos S, Bapputty R, Lopez Corcino Y, Hubal A, Daw J, Arora S, Sun W, Lu ZR, Subauste CS. Disruption of retinal inflammation and the development of diabetic retinopathy in mice by a CD40-derived peptide or mutation of CD40 in Müller cells. Diabetologia 2022; 65:2157-2171. [PMID: 35920844 PMCID: PMC9630214 DOI: 10.1007/s00125-022-05775-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 06/09/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS CD40 expressed in Müller cells is a central driver of diabetic retinopathy. CD40 causes phospholipase Cγ1 (PLCγ1)-dependent ATP release in Müller cells followed by purinergic receptor (P2X7)-dependent production of proinflammatory cytokines in myeloid cells. In the diabetic retina, CD40 and P2X7 upregulate a broad range of inflammatory molecules that promote development of diabetic retinopathy. The molecular event downstream of CD40 that activates the PLCγ1-ATP-P2X7-proinflammatory cytokine cascade and promotes development of diabetic retinopathy is unknown. We hypothesise that disruption of the CD40-driven molecular events that trigger this cascade prevents/treats diabetic retinopathy in mice. METHODS B6 and transgenic mice with Müller cell-restricted expression of wild-type (WT) CD40 or CD40 with mutations in TNF receptor-associated factor (TRAF) binding sites were made diabetic using streptozotocin. Leucostasis was assessed using FITC-conjugated concanavalin A. Histopathology was examined in the retinal vasculature. Expression of inflammatory molecules and phospho-Tyr783 PLCγ1 (p-PLCγ1) were assessed using real-time PCR, immunoblot and/or immunohistochemistry. Release of ATP and cytokines were measured by ATP bioluminescence and ELISA, respectively. RESULTS Human Müller cells with CD40 ΔT2,3 (lacks TRAF2,3 binding sites) were unable to phosphorylate PLCγ1 and release ATP in response to CD40 ligation, and could not induce TNF-α/IL-1β secretion in bystander myeloid cells. CD40-TRAF signalling acted via Src to induce PLCγ1 phosphorylation. Diabetic mice in which WT CD40 in Müller cells was replaced by CD40 ΔT2,3 failed to exhibit phosphorylation of PLCγ1 in these cells and upregulate P2X7 and TNF-α in microglia/macrophages. P2x7 (also known as P2rx7), Tnf-α (also known as Tnf), Il-1β (also known as Il1b), Nos2, Icam-1 (also known as Icam1) and Ccl2 mRNA were not increased in these mice and the mice did not develop retinal leucostasis and capillary degeneration. Diabetic B6 mice treated intravitreally with a cell-permeable peptide that disrupts CD40-TRAF2,3 signalling did not exhibit either upregulation of P2X7 and inflammatory molecules in the retina or leucostasis. CONCLUSIONS/INTERPRETATION CD40-TRAF2,3 signalling activated the CD40-PLCγ1-ATP-P2X7-proinflammatory cytokine pathway. Src functioned as a link between CD40-TRAF2,3 and PLCγ1. Replacing WT CD40 with CD40 ΔT2,3 impaired activation of PLCγ1 in Müller cells, upregulation of P2X7 in microglia/macrophages, upregulation of a broad range of inflammatory molecules in the diabetic retina and the development of diabetic retinopathy. Administration of a peptide that disrupts CD40-TRAF2,3 signalling reduced retinal expression of inflammatory molecules and reduced leucostasis in diabetic mice, supporting the therapeutic potential of pharmacological inhibition of CD40-TRAF2,3 in diabetic retinopathy.
Collapse
Affiliation(s)
- Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jin-Sang Yu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Reena Bapputty
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alyssa Hubal
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jad Daw
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sahil Arora
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Yu JS, Daw J, Portillo JAC, Subauste CS. CD40 Expressed in Endothelial Cells Promotes Upregulation of ICAM-1 But Not Pro-Inflammatory Cytokines, NOS2 and P2X7 in the Diabetic Retina. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34546322 PMCID: PMC8458989 DOI: 10.1167/iovs.62.12.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose CD40 is an upstream inducer of inflammation in the diabetic retina. CD40 is upregulated in retinal endothelial cells in diabetes. The purpose of this study was to determine whether expression of CD40 in endothelial cells is sufficient to promote inflammatory responses in the retina of diabetic mice. Methods Transgenic mice with CD40 expression restricted to endothelial cells (Trg-CD40 EC), transgenic control mice (Trg-Ctr), B6, and CD40−/− mice were made diabetic using streptozotocin. Leukostasis was assessed using FITC-conjugated ConA. Pro-inflammatory molecule expression was examined by real-time PCR, immunohistochemistry, ELISA, or flow cytometry. Release of ATP was assessed by ATP bioluminescence. Results Diabetic B6 and Trg-CD40 EC mice exhibited increased retinal mRNA levels of ICAM-1, higher ICAM-1 expression in endothelial cells, and increased leukostasis. These responses were not detected in diabetic mice that lacked CD40 (CD40−/− and Trg-Ctr). Diabetic B6 but not Trg-CD40 EC mice upregulated TNF-α, IL-1β, and NOS2 mRNA levels. CD40 stimulation in retinal endothelial cells upregulated ICAM-1 but not TNF-α, IL-1β, or NOS2. CD40 ligation did not trigger ATP release by retinal endothelial cells or pro-inflammatory cytokine production in bystander myeloid cells. In contrast to diabetic B6 mice, diabetic Trg-CD40 EC mice did not upregulate P2X7 mRNA levels in the retina. Conclusions Endothelial cell CD40 promotes ICAM-1 upregulation and leukostasis. In contrast, endothelial cell CD40 does not lead to pro-inflammatory cytokine and NOS2 upregulation likely because it does not activate purinergic-mediated pro-inflammatory molecule expression by myeloid cells or induce expression of these pro-inflammatory molecules in endothelial cells.
Collapse
Affiliation(s)
- Jin-Sang Yu
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jad Daw
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
6
|
Suttapitugsakul S, Tong M, Wu R. Time-Resolved and Comprehensive Analysis of Surface Glycoproteins Reveals Distinct Responses of Monocytes and Macrophages to Bacterial Infection. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:11595-11604. [PMID: 34421137 PMCID: PMC8376197 DOI: 10.1002/ange.202102692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Glycoproteins on the surface of immune cells play extremely important roles in response to pathogens. Yet, a systematic and time-resolved investigation of surface glycoproteins during the immune response remains to be explored. Integrating selective enrichment of surface glycoproteins with multiplexed proteomics, we globally and site-specifically quantified the dynamics of surface glycoproteins on THP-1 monocytes and macrophages in response to bacterial infection and during the monocyte-to-macrophage differentiation. The time-resolved analysis reveals transient changes and differential remodeling of surface glycoproteins on both cell types, and potential upstream regulators and downstream effects of the regulated glycoproteins. Besides, we identified novel surface glycoproteins participating in the immune response such as APMAP, and site-specific changes of glycoproteins. This study provides unprecedented information to deepen our understanding of glycoproteins and cellular activities.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332 (USA)
| | - Ming Tong
- School of Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332 (USA)
| | - Ronghu Wu
- School of Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332 (USA)
| |
Collapse
|
7
|
Suttapitugsakul S, Tong M, Wu R. Time-Resolved and Comprehensive Analysis of Surface Glycoproteins Reveals Distinct Responses of Monocytes and Macrophages to Bacterial Infection. Angew Chem Int Ed Engl 2021; 60:11494-11503. [PMID: 33684247 PMCID: PMC8549569 DOI: 10.1002/anie.202102692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Glycoproteins on the surface of immune cells play extremely important roles in response to pathogens. Yet, a systematic and time-resolved investigation of surface glycoproteins during the immune response remains to be explored. Integrating selective enrichment of surface glycoproteins with multiplexed proteomics, we globally and site-specifically quantified the dynamics of surface glycoproteins on THP-1 monocytes and macrophages in response to bacterial infection and during the monocyte-to-macrophage differentiation. The time-resolved analysis reveals transient changes and differential remodeling of surface glycoproteins on both cell types, and potential upstream regulators and downstream effects of the regulated glycoproteins. Besides, we identified novel surface glycoproteins participating in the immune response such as APMAP, and site-specific changes of glycoproteins. This study provides unprecedented information to deepen our understanding of glycoproteins and cellular activities.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry, and the Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332
(USA)
| | - Ming Tong
- School of Chemistry and Biochemistry, and the Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332
(USA)
| | - Ronghu Wu
- School of Chemistry and Biochemistry, and the Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332
(USA)
| |
Collapse
|
8
|
The Role of CD40 in Allergic Rhinitis and Airway Remodelling. Mediators Inflamm 2021; 2021:6694109. [PMID: 33976586 PMCID: PMC8087476 DOI: 10.1155/2021/6694109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/07/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Allergic rhinitis (AR) affects millions of people and is lack of effective treatment. CD40 is an important costimulatory molecule in immunity. However, few studies have focused on the role of CD40 in AR. Methods In this study, we built mouse model of chronic AR. The mice were divided into the AR, control, intravenous CD40 siRNA, and nasal CD40 siRNA groups (n = 6 each). We detected OVA-sIgE, IL-4, IL-5, IL-13, IL-10, IFN-γ, and TGF-β levels in serum and supernatant by ELISA, CD40+ splenic DCs, and Foxp3+ Tregs by flow cytometry and CD40 mRNA by RT2-PCR. We also used PAS and MT stains to assess tissue remodelling. Results (1) The OVA-sIgE, IL-4, IL-5, and IL-13 levels in the serum or supernatant of nasal septal membrane of AR mice were significantly higher than control. After treated with CD40 siRNA, those indicators were significantly decreased. The IFN-γ, IL-10, and TGF-β levels in AR mice were significantly lower than that in control and were increased by administration of CD40 siRNA. (2) AR mice had significantly fewer Foxp3+ Tregs in the spleen than control mice. After treated with CD40 siRNA, AR mice had significantly more Foxp3+ Tregs. (3) AR mice exhibited a significantly higher CD40 mRNA levels than control. Administration of CD40 siRNA significantly reduced the CD40 mRNA level. (4) The AR mice showed significantly greater collagen deposition than the control in MT staining. Applications of CD40 siRNA significantly reduced the collagen deposition in AR mice. Conclusion CD40 siRNA therapy shows promise for chronic AR as it significantly attenuated allergic symptoms and Th2-related inflammation and upregulated Foxp3+ Tregs. CD40 plays a role in tissue remodelling in AR, which can be inhibited by CD40 siRNA application.
Collapse
|
9
|
Portillo JC, Yu J, Hansen S, Kern TS, Subauste MC, Subauste CS. A cell-penetrating CD40-TRAF2,3 blocking peptide diminishes inflammation and neuronal loss after ischemia/reperfusion. FASEB J 2021; 35:e21412. [PMID: 33675257 PMCID: PMC8101361 DOI: 10.1096/fj.201903203rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
While the administration of anti-CD154 mAbs in mice validated the CD40-CD154 pathway as a target against inflammatory disorders, this approach caused thromboembolism in humans (unrelated to CD40 inhibition) and is expected to predispose to opportunistic infections. There is a need for alternative approaches to inhibit CD40 that avoid these complications. CD40 signals through TRAF2,3 and TRAF6-binding sites. Given that CD40-TRAF6 is the pathway that stimulates responses key for cell-mediated immunity against opportunistic pathogens, we examined the effects of pharmacologic inhibition of CD40-TRAF2,3 signaling. We used a model of ischemia/reperfusion (I/R)-induced retinopathy, a CD40-driven inflammatory disorder. Intravitreal administration of a cell-penetrating CD40-TRAF2,3 blocking peptide impaired ICAM-1 upregulation in retinal endothelial cells and CXCL1 upregulation in endothelial and Müller cells. The peptide reduced leukocyte infiltration, upregulation of NOS2/COX-2/TNF-α/IL-1β, and ameliorated neuronal loss, effects that mimic those observed after I/R in Cd40-/- mice. While a cell-penetrating CD40-TRAF6 blocking peptide also diminished I/R-induced inflammation, this peptide (but not the CD40-TRAF2,3 blocking peptide) impaired control of the opportunistic pathogen Toxoplasma gondii in the retina. Thus, inhibition of the CD40-TRAF2,3 pathway is a novel and potent approach to reduce CD40-induced inflammation, while likely diminishing the risk of opportunistic infections that would otherwise accompany CD40 inhibition.
Collapse
Affiliation(s)
- Jose‐Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Jin‐Sang Yu
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Samuel Hansen
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
| | - Timothy S. Kern
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - M. Cecilia Subauste
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of MedicineCase Western Reserve UniversityClevelandOHUSA
- Division of Pulmonary, Critical Care, Allergy and Sleep MedicineVeterans Administration Medical CenterClevelandOHUSA
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of MedicineCase Western Reserve University School of MedicineClevelandOHUSA
- Department of PathologyCase Western Reserve University School of MedicineClevelandOHUSA
| |
Collapse
|
10
|
CD40/CD40L Signaling as a Promising Therapeutic Target for the Treatment of Renal Disease. J Clin Med 2020; 9:jcm9113653. [PMID: 33202988 PMCID: PMC7697100 DOI: 10.3390/jcm9113653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.
Collapse
|
11
|
Subauste CS. The CD40-ATP-P2X 7 Receptor Pathway: Cell to Cell Cross-Talk to Promote Inflammation and Programmed Cell Death of Endothelial Cells. Front Immunol 2019; 10:2958. [PMID: 31921199 PMCID: PMC6928124 DOI: 10.3389/fimmu.2019.02958] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular adenosine 5′-triphosphate (ATP) functions not only as a neurotransmitter but is also released by non-excitable cells and mediates cell–cell communication involving glia. In pathological conditions, extracellular ATP released by astrocytes may act as a “danger” signal that activates microglia and promotes neuroinflammation. This review summarizes in vitro and in vivo studies that identified CD40 as a novel trigger of ATP release and purinergic-induced inflammation. The use of transgenic mice with expression of CD40 restricted to retinal Müller glia and a model of diabetic retinopathy (a disease where the CD40 pathway is activated) established that CD40 induces release of ATP in Müller glia and triggers in microglia/macrophages purinergic receptor-dependent inflammatory responses that drive the development of retinopathy. The CD40-ATP-P2X7 pathway not only amplifies inflammation but also induces death of retinal endothelial cells, an event key to the development of capillary degeneration and retinal ischemia. Taken together, CD40 expressed in non-hematopoietic cells is sufficient to mediate inflammation and tissue pathology as well as cause death of retinal endothelial cells. This process likely contributes to development of degenerate capillaries, a hallmark of diabetic and ischemic retinopathies. Blockade of signaling pathways downstream of CD40 operative in non-hematopoietic cells may offer a novel means of treating diabetic and ischemic retinopathies.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Kojok K, El-Kadiry AEH, Merhi Y. Role of NF-κB in Platelet Function. Int J Mol Sci 2019; 20:E4185. [PMID: 31461836 PMCID: PMC6747346 DOI: 10.3390/ijms20174185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets undergo the same physiological processes of activation, secretion, and aggregation yet with such pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB (NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB, which seems to function in other non-genomic ways to modulate atherothrombosis. Therein, this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications at the levels of platelet survival and function. We will also share the knowledge thus far on the effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology and pathophysiology of atherothrombosis.
Collapse
Affiliation(s)
- Kevin Kojok
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Abed El-Hakim El-Kadiry
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada
| | - Yahye Merhi
- The Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Centre, 5000 Belanger Street, Montreal, H1T 1C8, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montreal, H3T 1J4, QC, Canada.
| |
Collapse
|
13
|
CD40 in Endothelial Cells Restricts Neural Tissue Invasion by Toxoplasma gondii. Infect Immun 2019; 87:IAI.00868-18. [PMID: 31109947 DOI: 10.1128/iai.00868-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.
Collapse
|
14
|
Zhang L, Zhang X, Si F. MicroRNA-124 represents a novel diagnostic marker in human lupus nephritis and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1578-1588. [PMID: 31933975 PMCID: PMC6947142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miRs) are short non-coding RNAs that function as guide molecules in RNA silencing by inducing mRNA degradation or blocking protein translation. Increasing evidence has shown that miRNAs play an important role in regulating the pathological process of lupus nephritis (LN), but the precise role of miR-124 in LN is still unknown. Here, we found that miR-124 expression is significantly reduced in patients with active LN compared with those patients with non-active LN and the absence of LN. Additionally, the miR-124 level was negatively correlated with serum IL-1β, IL-6, TNF-α, and TRAF6 mRNA expressions in active LN patients. Receiver operating characteristic and logistic regression analyses revealed miR-124 is a significant diagnostic biomarker for active LN. Furthermore, transfection of the miR-124 mimic into human renal mesangial cells (HRMCs) resulted in significantly reduced cell proliferation, induced cell apoptosis, and decreased synthesis of inflammatory factors. Moreover, a dual luciferase assay showed that TRAF6 was a direct target of miR-124, and the expression of TRAF6 was suppressed by miR-124 through direct binding to the 3'-UTR of mRNA. Mechanistic studies demonstrated that the over-expression of TRAF6 could abrogate miR-124-related effects on cell proliferation, apoptosis and the synthesis of inflammatory factors in HRMCs. Taken together, these findings indicate that downregulated miR-124 represents a novel diagnostic marker in human LN and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephropathy, Tianjin Nankai HospitalTianjin, China
| | - Xingkun Zhang
- Department of Nephropathy, Affiliated Hospital of Tianjin Academy of Traditional Chinese MedicineTianjin, China
| | - Fuquan Si
- Department of Nephropathy, Affiliated Hospital of Tianjin Academy of Traditional Chinese MedicineTianjin, China
| |
Collapse
|
15
|
Marshall A, Celentano A, Cirillo N, Mirams M, McCullough M, Porter S. Immune receptors CD40 and CD86 in oral keratinocytes and implications for oral lichen planus. J Oral Sci 2018; 59:373-382. [PMID: 28904313 DOI: 10.2334/josnusd.16-0334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Lichen planus (LP) is a chronic T-cell-mediated mucocutaneous inflammatory disease that targets stratified epithelia, including those lining the oral cavity. The intraoral variant of LP (OLP) is associated with interferon (IFN)-γ production by infiltrating T lymphocytes; however, the role of epithelial cells in the etiopathogenesis OLP is not completely understood. There is however a growing body of evidence regarding the involvement of epithelial-derived cytokines, immune receptors, and costimulatory molecules in the pathobiological processes that promote and sustain OLP. In the present study, we used a reverse transcriptase-polymerase chain reaction assay to assess whether CD40-a receptor found mainly on antigen presenting cells-and the costimulatory molecule CD86 were expressed in oral keratinocytes (three strains of primary normal oral keratinocytes and the H357 cell line) in the presence or absence of IFN-γ. To further characterize the involvement of CD40 in OLP, expression and distribution of receptor and ligand (CD40/CD154) in tissues from OLP were evaluated by immunohistochemistry. The present results are the first to show that both CD40 and CD86 are constitutively expressed at low levels in oral keratinocytes and that their expression was enhanced by IFN-γ stimulation. The intensity of CD40 staining in OLP tissues was strong. Taken together, the results strongly suggest that CD40 and CD86 play a role in the pathophysiology of oral inflammatory diseases such as OLP.
Collapse
Affiliation(s)
| | - Antonio Celentano
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University Federico II of Naples.,Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne
| | - Michiko Mirams
- Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne
| | - Michael McCullough
- Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne
| | | |
Collapse
|
16
|
Subauste CS. CD40, a Novel Inducer of Purinergic Signaling: Implications to the Pathogenesis of Experimental Diabetic Retinopathy. Vision (Basel) 2017; 1:vision1030020. [PMID: 31740645 PMCID: PMC6835793 DOI: 10.3390/vision1030020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy is a leading complication of diabetes. Death of capillary cells with resulting capillary degeneration is a central feature of this disease. Chronic low-grade inflammation has been linked to the development of retinal capillary degeneration in diabetes. CD40 is an upstream inducer of a broad range of inflammatory responses in the diabetic retina and is required for death of retinal capillary cells. Recent studies uncovered CD40 as a novel inducer of purinergic signaling and identified the CD40-ATP-P2X7 pathway as having a key role in the induction of inflammation in the diabetic retina and programmed cell death of retinal endothelial cells.
Collapse
Affiliation(s)
- Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-2785
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Wu Y, Song LT, Li JS, Zhu DW, Jiang SY, Deng JY. MicroRNA-126 Regulates Inflammatory Cytokine Secretion in Human Gingival Fibroblasts Under High Glucose via Targeting Tumor Necrosis Factor Receptor Associated Factor 6. J Periodontol 2017; 88:e179-e187. [PMID: 28598282 DOI: 10.1902/jop.2017.170091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRs) play a crucial role in inflammatory diseases, including periodontitis. Meanwhile, miRs act as biomarkers for predicting diabetes mellitus (DM). However, the regulatory mechanism of miR-126 on development of periodontitis in patients with DM still remains unclear. METHODS Human gingival fibroblasts were cultured with low (5.5 mmol/L), medium (15 mmol/L), and high (25 mmol/L) glucose, respectively. Expressions of miR-126, tumor necrosis factor (TNF) receptor associated factor (TRAF) 6, and related cytokines were analyzed by real-time polymerase chain reaction (PCR). After transfection with miR-126 mimic, PCR and western blot were performed to detect level of TRAF6, and luciferase reporter assay confirmed if TRAF6 is the direct target of miR-126. Production of cytokines was measured using enzyme-linked immunosorbent assay. RESULTS Increased glucose significantly suppressed miR-126 expression in human gingival fibroblasts (P <0.05). Also, high glucose increased TRAF6, interleukin (IL)-6, TNF-α, and chemical chemokine ligand (CCL) 2 levels, whereas it decreased IL-10 level. MiR-126 mimic significantly decreased TRAF6 mRNA and protein levels under high glucose (P <0.05). Also, miR-126 directly targeted TRAF6 through binding to its 3' untranslated region in human gingival fibroblasts. Overexpression of miR-126 significantly abrogated high glucose-induced secretion of proinflammatory cytokines such as IL-6, TNF-α, and CCL2 and promoted production of IL-10. CONCLUSION These data suggest that miR-126 inhibits inflammation of human gingival fibroblasts under high glucose through targeting TRAF6, which may be a potential therapeutic target for periodontitis concomitant with DM.
Collapse
Affiliation(s)
- Yi Wu
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Li-Ting Song
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jia-Shan Li
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Dong-Wang Zhu
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Shao-Yun Jiang
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jia-Yin Deng
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Portillo JAC, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern TS, Dubyak GR, Subauste CS. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes 2017; 66:483-493. [PMID: 27474370 PMCID: PMC5248988 DOI: 10.2337/db16-0051] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Müller cells and macrophages/microglia are likely important for the development of diabetic retinopathy; however, the interplay between these cells in this disease is not well understood. An inflammatory process is linked to the onset of experimental diabetic retinopathy. CD40 deficiency impairs this process and prevents diabetic retinopathy. Using mice with CD40 expression restricted to Müller cells, we identified a mechanism by which Müller cells trigger proinflammatory cytokine expression in myeloid cells. During diabetes, mice with CD40 expressed in Müller cells upregulated retinal tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), intracellular adhesion molecule 1 (ICAM-1), and nitric oxide synthase (NOS2), developed leukostasis and capillary degeneration. However, CD40 did not cause TNF-α or IL-1β secretion in Müller cells. TNF-α was not detected in Müller cells from diabetic mice with CD40+ Müller cells. Rather, TNF-α was upregulated in macrophages/microglia. CD40 ligation in Müller cells triggered phospholipase C-dependent ATP release that caused P2X7-dependent production of TNF-α and IL-1β by macrophages. P2X7-/- mice and mice treated with a P2X7 inhibitor were protected from diabetes-induced TNF-α, IL-1β, ICAM-1, and NOS2 upregulation. Our studies indicate that CD40 in Müller cells is sufficient to upregulate retinal inflammatory markers and appears to promote experimental diabetic retinopathy and that Müller cells orchestrate inflammatory responses in myeloid cells through a CD40-ATP-P2X7 pathway.
Collapse
Affiliation(s)
- Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Yanling Miao
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jie Tang
- Division of Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Nader Sheibani
- Department of Ophthalmology, University of Wisconsin-Madison, Madison, WI
| | - Timothy S Kern
- Division of Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland Veterans Administration Medical Center, Research Service 151, Cleveland, OH
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
| | - Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
19
|
Meddens CA, Harakalova M, van den Dungen NAM, Foroughi Asl H, Hijma HJ, Cuppen EPJG, Björkegren JLM, Asselbergs FW, Nieuwenhuis EES, Mokry M. Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease. Genome Biol 2016; 17:247. [PMID: 27903283 PMCID: PMC5131449 DOI: 10.1186/s13059-016-1100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci. We have recently shown that 92 of the 163 inflammatory bowel disease (IBD)-loci co-localize with non-coding DNA regulatory elements (DREs). Mutations in DREs can contribute to IBD pathogenesis through dysregulation of gene expression. Consequently, genes that are regulated by these 92 DREs are to be considered as candidate genes. This study uses circular chromosome conformation capture-sequencing (4C-seq) to systematically analyze chromatin-interactions at IBD susceptibility loci that localize to regulatory DNA. RESULTS Using 4C-seq, we identify genomic regions that physically interact with the 92 DRE that were found at IBD susceptibility loci. Since the activity of regulatory elements is cell-type specific, 4C-seq was performed in monocytes, lymphocytes, and intestinal epithelial cells. Altogether, we identified 902 novel IBD candidate genes. These include genes specific for IBD-subtypes and many noteworthy genes including ATG9A and IL10RA. We show that expression of many novel candidate genes is genotype-dependent and that these genes are upregulated during intestinal inflammation in IBD. Furthermore, we identify HNF4α as a potential key upstream regulator of IBD candidate genes. CONCLUSIONS We reveal many novel and relevant IBD candidate genes, pathways, and regulators. Our approach complements classical candidate gene identification, links novel genes to IBD and can be applied to any existing GWAS data.
Collapse
Affiliation(s)
- Claartje A. Meddens
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hassan Foroughi Asl
- Vascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hemme J. Hijma
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Edwin P. J. G. Cuppen
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - Johan L. M. Björkegren
- Vascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Durrer Center for Cardiogenetic Research, Utrecht, The Netherlands
- Institute of Cardiovascular Science, University College London, London, UK
| | - Edward E. S. Nieuwenhuis
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
20
|
Portillo JAC, Lopez Corcino Y, Dubyak GR, Kern TS, Matsuyama S, Subauste CS. Ligation of CD40 in Human Müller Cells Induces P2X7 Receptor-Dependent Death of Retinal Endothelial Cells. Invest Ophthalmol Vis Sci 2016; 57:6278-6286. [PMID: 27893093 PMCID: PMC5119488 DOI: 10.1167/iovs.16-20301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose Cluster of differentiation 40 (CD40) is required for retinal capillary degeneration in diabetic mice, a process mediated by the retinal endothelial cells (REC) death. However, CD40 activates prosurvival signals in endothelial cells. The purpose of this study was to identify a mechanism by which CD40 triggers programmed cell death (PCD) of RECs and address this paradox. Methods Human RECs and Müller cells were incubated with CD154 and L-N6-(1-Iminoethyl)lysine (L-Nil, nitric oxide synthase 2 inhibitor), α-lipoic acid (inhibitor of oxidative stress), anti-Fas ligand antibody, or A-438079 (P2X7 adenosine triphosphate [ATP] receptor inhibitor). Programmed cell death was analyzed by fluorescence-activated cell sorting (FACS) or Hoechst/propidium iodide staining. Release of ATP was measured using a luciferase-based assay. Mice were made diabetic with streptozotocin. Expression of P2X7 was assessed by FACS, quantitative PCR, or immunohistochemistry. Results Ligation of CD40 in primary RECs did not induce PCD. In contrast, in the presence of primary CD40+ Müller cells, CD40 stimulation caused PCD of RECs that was not impaired by L-Nil, α-lipoic acid, or anti-Fas ligand antibody. We found CD40 did not trigger TNF-α or IL-1β secretion. Primary Müller cells released extracellular ATP in response to CD40 ligation. Inhibition of P2X7 (A-438079) impaired PCD of RECs; CD40 upregulated P2X7 in RECs, making them susceptible to ATP/P2X7-mediated PCD. Diabetic mice upregulated P2X7 in the retina and RECs in a CD40-dependent manner. Conclusions Cluster of differentiation 40 induces PCD of RECs through a dual mechanism: ATP release by Müller cells and P2X7 upregulation in RECs. These findings are likely of in vivo relevance since CD40 upregulates P2X7 in RECs in diabetic mice and CD40 is known to be required for retinal capillary degeneration.
Collapse
Affiliation(s)
- Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| | - George R. Dubyak
- Department of Biophysics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Timothy S. Kern
- Division of Molecular Endocrinology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
- Veterans Administration Medical Center, Research Service 151, Cleveland, Ohio, United States
| | - Shigemi Matsuyama
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
21
|
Kim NS, Mbongue JC, Nicholas DA, Esebanmen GE, Unternaehrer JJ, Firek AF, Langridge WHR. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway. PLoS One 2016; 11:e0147509. [PMID: 26881431 PMCID: PMC4755608 DOI: 10.1371/journal.pone.0147509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoimmunity/drug effects
- Base Sequence
- Cholera Toxin/biosynthesis
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Gene Expression Regulation
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/immunology
- I-kappa B Kinase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Mice
- Mice, Inbred NOD
- Molecular Sequence Data
- NF-kappa B/genetics
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Proinsulin/biosynthesis
- Proinsulin/genetics
- Proinsulin/immunology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- TNF Receptor-Associated Factor 2/pharmacology
- TNF Receptor-Associated Factor 3/pharmacology
- TNF Receptor-Associated Factor 6/pharmacology
- Vaccines/administration & dosage
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju, Republic of Korea
| | - Jacques C. Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Physiology, Loma Linda, California, United States of America
| | - Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Biochemistry, Loma Linda, California, United States of America
| | - Grace E. Esebanmen
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Earth and Biological Sciences, Loma Linda, California, United States of America
| | - Juli J. Unternaehrer
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Biochemistry, Loma Linda, California, United States of America
| | - Anthony F. Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Biochemistry, Loma Linda, California, United States of America
| |
Collapse
|
22
|
Hu J, Zhu XH, Zhang XJ, Wang PX, Zhang R, Zhang P, Zhao GN, Gao L, Zhang XF, Tian S, Li H. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury. J Hepatol 2016; 64:146-59. [PMID: 26334576 DOI: 10.1016/j.jhep.2015.08.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/01/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The hallmarks of hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, include severe cell death and inflammatory responses that contribute to early graft failure and a higher incidence of organ rejection. Unfortunately, effective therapeutic strategies are limited. Tumor necrosis factor receptor (TNFR)-associated factor (TRAF) 3 transduces apoptosis and/or inflammation-related signaling pathways to regulate cell survival and cytokine production. However, the role of TRAF3 in hepatic I/R-induced liver damage remains unknown. METHODS Hepatocyte- or myeloid cell-specific TRAF3 knockdown or transgenic mice were subjected to an I/R model in vivo, and in vitro experiments were performed by treating primary hepatocytes from these mice with hypoxia/reoxygenation stimulation. The function of TRAF3 in I/R-induced liver damage and the potential underlying mechanisms were investigated through various phenotypic analyses and biological approaches. RESULTS Hepatocyte-specific, but not myeloid cell-specific, TRAF3 deficiency reduced cell death, inflammatory cell infiltration, and cytokine production in both in vivo and in vitro hepatic I/R models, whereas hepatic TRAF3 overexpression resulted in the opposite effects. Mechanistically, TRAF3 directly binds to TAK1, which enhances the activation of the downstream NF-κB and JNK pathways. Importantly, inhibition of TAK1 almost completely reversed the TRAF3 overexpression-mediated exacerbation of I/R injury. CONCLUSIONS TRAF3 is a novel hepatic I/R mediator that promotes liver damage and inflammation via TAK1-dependent activation of the JNK and NF-κB pathways. Inhibition of hepatic TRAF3 may represent a promising approach to protect the liver against I/R injury-related diseases.
Collapse
Affiliation(s)
- Junfei Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Xue-Hai Zhu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Jing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Ran Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Guang-Nian Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Greene JA, Portillo JAC, Lopez Corcino Y, Subauste CS. CD40-TRAF Signaling Upregulates CX3CL1 and TNF-α in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells. PLoS One 2015; 10:e0144133. [PMID: 26710229 PMCID: PMC4692437 DOI: 10.1371/journal.pone.0144133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/14/2015] [Indexed: 11/23/2022] Open
Abstract
CD40, CX3CL1 and TNF-α promote atheroma and neointima formation. CD40 and TNF-α are also central to the development of diabetic retinopathy while CX3CL1 may play a role in the pathogenesis of this retinopathy. The purpose of this study was to examine whether CD40 ligation increases CX3CL1 and TNF-α protein expression in human endothelial cells from the aorta and retina. CD154 (CD40 ligand) upregulated membrane-bound and soluble CX3CL1 in human aortic endothelial cells. CD154 triggered TNF-α production by human aortic endothelial cells. TNF Receptor Associated Factors (TRAF) are key mediators of CD40 signaling. Compared to human aortic endothelial cells that express wt CD40, cells that express CD40 with a mutation that prevents TRAF2,3 recruitment, or CD40 with a mutation that prevents TRAF6 recruitment exhibited a profound inhibition of CD154-driven upregulation of membrane bound and soluble CX3CL1 as well as of TNF-α secretion. While both CD154 and TNF-α upregulated CX3CL1 in human aortic endothelial cells, these stimuli could act independently of each other. In contrast to human aortic endothelial cells, human retinal endothelial cells did not increase membrane bound or soluble CX3CL1 expression or secrete TNF-α in response to CD154 even though CD40 ligation upregulated ICAM-1 and CCL2 in these cells. Moreover, TNF-α did not upregulate CX3CL1 in retinal endothelial cells. In conclusion, CD40 ligation increases CX3CL1 protein levels and induces TNF-α production in endothelial cells. However, endothelial cells are heterogeneous in regards to these responses. Human aortic but not retinal endothelial cells upregulated CX3CL1 and TNF-α in response to CD40 ligation, as well as upregulated CX3CL1 in response to TNF-α. These dissimilarities may contribute to differences in regulation of inflammation in large vessels versus the retina.
Collapse
Affiliation(s)
- Jennifer A. Greene
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Dept. of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bei JJ, Liu C, Peng S, Liu CH, Zhao WB, Qu XL, Chen Q, Zhou Z, Yu ZP, Peter K, Hu HY. Staphylococcal SSL5-induced platelet microparticles provoke proinflammatory responses via the CD40/TRAF6/NFκB signalling pathway in monocytes. Thromb Haemost 2015; 115:632-45. [PMID: 26632487 DOI: 10.1160/th15-04-0322] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023]
Abstract
Pathogens-induced platelet activation contributes to inflammation in cardiovascular diseases, but underlying mechanisms remain elusive. Staphylococcal superantigen-like protein 5 (SSL5) is a known activator of platelets. Here we examined whether SSL5 is implicated in Staphylococcus aureus (S. aureus)-induced inflammation and potential mechanisms involved. As expected, we show that SSL5 activates human platelets and induces generation of platelet microparticles (PMPs). Flow cytometry and scanning electron microscopy studies demonstrate that SSL5-induced PMPs (SSL5-PMPs) bind to monocytes, causing aggregate formation. In addition, SSL5-PMPs provoke monocyte expression and release of inflammatory mediators, including interleukin-1β (IL-1β), tumour necrosis factor-α (TNFα), monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9) in a dose- and time-dependent manner. SSL5-PMPs also enhance MCP-1-induced monocyte migration. Blockade of CD40 and CD40 ligand (CD40L) interactions with neutralising antibodies significantly reduce monocyte release of inflammatory mediators and migration induced by SSL5-PMPs. SiRNA-mediated silencing of CD40 or TNF receptor (TNFR)-associated factor 6 (TRAF6) gene largely abrogates phosphorylation and nuclear translocation of NFκB (p65). In conclusion, SSL5 provokes the release of inflammatory mediators in monocytes, at least in part, via PMPs-mediated activation of the CD40/TRAF6/NFκB signalling pathway, though it normally inhibits leukocyte function. Our findings thus reveal a novel mechanism by which S. aureus induces inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hou-Yuan Hu
- Hou-Yuan Hu, Department of Cardiology, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China, Tel.: +86 23 68765167, Fax: +86 23 65317511, E-mail:
| |
Collapse
|
25
|
Chen JM, Guo J, Wei CD, Wang CF, Luo HC, Wei YS, Lan Y. The association of CD40 polymorphisms with CD40 serum levels and risk of systemic lupus erythematosus. BMC Genet 2015; 16:121. [PMID: 26474561 PMCID: PMC4608213 DOI: 10.1186/s12863-015-0279-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Background Current evidence shows that the CD40–CD40 ligand (CD40–CD40L) system plays a crucial role in the development, progression and outcome of systemic lupus erythematosus (SLE). The aim of this study was to investigate whether a CD40 gene single nucleotide polymorphism (SNP) is associated with SLE and CD40 expression in the Chinese population. We included controls (n = 220) and patients with either SLE (n =205) in the study. Methods The gene polymorphism was measured using Snapshot SNP genotyping assays and confirmed by sequencing. We analyzed three single nucleotide polymorphisms of CD40 gene rs1883832C/T, rs1569723A/C and rs4810485G/T in 205 patients with SLE and 220 age-and sex-matched controls. Soluble CD40 (sCD40) levels were measured by ELISA. Results There were significant differences in the genotype and allele frequencies of CD40 gene rs1883832C/T polymorphism between the group of patients with SLE and the control group (P < 0.05). sCD40 levels were increased in patients with SLE compared with controls (P < 0.01). Moreover, genotypes carrying the CD40 rs1883832 C/T variant allele were associated with increased CD40 levels compared to the homozygous wild-type genotype in patients with SLE. The rs1883832C/T polymorphism of CD40 and its sCD40 levels were associated with SLE in the Chinese population. Conclusions Our results suggest that CD40 gene may play a role in the development of SLE in the Chinese population.
Collapse
Affiliation(s)
- Jian-Ming Chen
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Jing Guo
- Department of Dermatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Chuan-Dong Wei
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Chun-Fang Wang
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Hong-Cheng Luo
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yan Lan
- Department of Dermatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|