1
|
Zhou T, Guan Y, Sun L, Liu W. A review: Mechanisms and molecular pathways of signaling lymphocytic activation molecule family 3 (SLAMF3) in immune modulation and therapeutic prospects. Int Immunopharmacol 2024; 133:112088. [PMID: 38626547 DOI: 10.1016/j.intimp.2024.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
The signaling lymphocytic activation molecule (SLAM) family participates in the modulation of various innate and adaptive immune responses. SLAM family (SLAMF) receptors include nine transmembrane glycoproteins, of which SLAMF3 (also known as CD229 or Ly9) has important roles in the modulation of immune responses, from the fundamental activation and suppression of immune cells to the regulation of intricate immune networks. SLAMF3 is mainly expressed in immune cells, such as T, B, and natural killer cells. It has a unique molecular structure, including four immunoglobulin-like domains in the extracellular domain and two immunoreceptor tyrosine-based signaling motifs in the intracellular structural domains. These unique structures have important implications for protein functioning. SLAMF3 is involved in pathogenesis of various disease, particularly autoimmune diseases and cancer. However, despite its potential clinical significance, a comprehensive overview of the current paradigm of SLAMF3 research is lacking. This review summarizes the structure, functional mechanisms, and therapeutic implications of SLAMF3. Our findings highlight the significance of SLAMF3 in both physiological and pathological contexts, and underline its dual role in autoimmunity and malignancies, and including disease progression and prognosis. The review also proposes that future studies on SLAMF3 should explore its context-specific inhibitory and stimulatory effects, expand on its potential in disease mapping, investigate related signaling pathways, and explore its value as a drug target. Research in these areas related to SLAMF3 can provide more precise directions for future therapeutic strategies.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130021, China
| | - Yanjie Guan
- Department of Oncology, the First Hospital of Jilin University, Changchun 130021, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun 130021, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130021, China.
| |
Collapse
|
2
|
Gartshteyn Y, Geraldino-Pardilla L, Khalili L, Bukhari S, Lerrer S, Winchester RJ, Askanase AD, Mor A. SAP-expressing T peripheral helper cells identify systemic lupus erythematosus patients with lupus nephritis. Front Immunol 2024; 15:1327437. [PMID: 38550577 PMCID: PMC10972949 DOI: 10.3389/fimmu.2024.1327437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Introduction T follicular (TFH) and peripheral helper (TPH) cells have been increasingly recognized as a pathogenic subset of CD4 T cells in systemic lupus erythematosus (SLE). The SLAM Associated Protein (SAP) regulates TFH and TPH function by binding to the co-stimulatory signaling lymphocyte activation molecule family (SLAMF) receptors that mediate T cell - B cell interactions. SAP and SLAMF are critical for TPH-dependent B cell maturation into autoantibody-producing plasma cells that characterize SLE pathogenesis. We hypothesized that SAP-expressing TPH cells are involved in the pathogenesis of lupus nephritis (LN). Methods Peripheral blood mononuclear cells (PBMC) were isolated using density gradient separation from whole blood. Cells were stained for cell surface markers, followed by permeabilization and staining of intracellular SAP for spectral flow cytometry analysis. We also analyzed SAP expression from renal infiltrating LN T cells using the available single-cell RNA sequencing (scRNA seq) Accelerated Medicines Partnership (AMP) SLE dataset. Results PBMC from 30 patients with SLE (34 ± 10 years old, 83% female), including 10 patients with LN, were analyzed. We found an increase in total SAP-positive CD4 and CD8 T cells in SLE compared with controls (55.5 ± 2.6 vs. 41.3 ± 3.4, p=0.007, and 52.5 ± 3.0 vs. 39.2 ± 2.8, p=0.007 respectively). In CD4 T cells, the highest SAP expression was in the TPH subset. The frequency of SAP+TPH in circulation correlated with disease activity; SLE patients with renal disease had higher levels of circulating SAP+TPH that remained significant after adjusting for age, sex, race, low complements, and elevated anti-dsDNA (p=0.014). scRNA-seq data of renal infiltrating T cells in LN identified SAP expression to localize to the TFH-like CD4 cluster and GZMK+ CD8 cluster. Increased SAP expression in LN was associated with the differential expression of SLAMF3 and SLAMF7 and granzyme K and EOMES. The existence of two predominant SAP-expressing subsets, the TFH-like CD4 T cells, and GZMK+ effector CD8 T cells, was verified using scRNA-seq data from a human transcriptomic atlas of fifteen major organs. Conclusion The expansion of SAP-expressing T helper cells was associated with LN in our cohort and verified using scRNA-seq data of renal infiltrating T cells. Improved SLAM and SAP signaling understanding can identify new therapeutic targets in LN.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Laura Geraldino-Pardilla
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Leila Khalili
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Shoiab Bukhari
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Shalom Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Robert J. Winchester
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Anca D. Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Kang JY, Yang J, Lee H, Park S, Gil M, Kim KE. Systematic Multiomic Analysis of PKHD1L1 Gene Expression and Its Role as a Predicting Biomarker for Immune Cell Infiltration in Skin Cutaneous Melanoma and Lung Adenocarcinoma. Int J Mol Sci 2023; 25:359. [PMID: 38203530 PMCID: PMC10778817 DOI: 10.3390/ijms25010359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of genetic factors that regulate the cancer immune microenvironment is important for understanding the mechanism of tumor progression and establishing an effective treatment strategy. Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is a large transmembrane protein that is highly expressed in immune cells; however, its association with tumor progression remains unclear. Here, we systematically analyzed the clinical relevance of PKHD1L1 in the tumor microenvironment in multiple cancer types using various bioinformatic tools. We found that the PKHD1L1 mRNA expression levels were significantly lower in skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD) than in normal tissues. The decreased expression of PKHD1L1 was significantly associated with unfavorable overall survival (OS) in SKCM and LUAD. Additionally, PKHD1L1 expression was positively correlated with the levels of infiltrating B cells, cluster of differentiation (CD)-8+ T cells, and natural killer (NK) cells, suggesting that the infiltration of immune cells could be associated with a good prognosis due to increased PKHD1L1 expression. Gene ontology (GO) analysis also revealed the relationship between PKHD1L1-co-altered genes and the activation of lymphocytes, including B and T cells. Collectively, this study shows that PKHD1L1 expression is positively correlated with a good prognosis via the induction of immune infiltration, suggesting that PKHD1L1 has potential prognostic value in SKCM and LUAD.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Minchan Gil
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
4
|
Murata R, Kinoshita S, Matsuda K, Kawaguchi A, Shibuya A, Shibuya K. G307S DNAM-1 Mutation Exacerbates Autoimmune Encephalomyelitis via Enhancing CD4+ T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:ji2200608. [PMID: 36426998 DOI: 10.4049/jimmunol.2200608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 02/17/2024]
Abstract
Although rs763361, which causes a nonsynonymous glycine-to-serine mutation at residue 307 (G307S mutation) of the DNAX accessory molecule-1 (DNAM-1) immunoreceptor, is a single-nucleotide polymorphism associated with autoimmune disease susceptibility, little is known about how the single-nucleotide polymorphism is involved in pathogenesis. In this study, we established human CD4+ T cell transfectants stably expressing wild-type (WT) or G307S DNAM-1 and showed that the costimulatory signal from G307S DNAM-1 induced greater proinflammatory cytokine production and cell proliferation than that from wild-type DNAM-1. The G307S mutation also enhanced the recruitment of the tyrosine kinase Lck and augmented p-Tyr322 of DNAM-1. We also established a mouse myelin Ag-specific CD4+ T cell transfectant stably expressing the chimeric DNAM-1 (chDNAM-1) consisting of the extracellular, transmembrane, and a part of intracellular regions of mouse DNAM-1 (residues 1-285) fused with the part of the intracellular region (residues 286-336) of human WT or G307S chDNAM-1. Adoptive transfer of the mouse T cell transfectant expressing the G307S chDNAM-1 into mice exacerbated experimental autoimmune encephalomyelitis compared with the transfer of cells expressing the WT chDNAM-1. These findings suggest that rs763361 is a gain-of-function mutation that enhances DNAM-1-mediated costimulatory signaling for proinflammatory responses.
Collapse
Affiliation(s)
- Rikito Murata
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Shota Kinoshita
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- PhD Program in Human Biology, University of Tsukuba, Tsukuba, Japan
| | - Kenshiro Matsuda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; and
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Gartshteyn Y, Askanase AD, Mor A. SLAM Associated Protein Signaling in T Cells: Tilting the Balance Toward Autoimmunity. Front Immunol 2021; 12:654839. [PMID: 33936082 PMCID: PMC8086963 DOI: 10.3389/fimmu.2021.654839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
T cell activation is the result of the integration of signals across the T cell receptor and adjacent co-receptors. The signaling lymphocyte activation molecules (SLAM) family are transmembrane co-receptors that modulate antigen driven T cell responses. Signal transduction downstream of the SLAM receptor is mediated by the adaptor protein SLAM Associated Protein (SAP), a small intracellular protein with a single SH2 binding domain that can recruit tyrosine kinases as well as shield phosphorylated sites from dephosphorylation. Balanced SLAM-SAP signaling within T cells is required for healthy immunity, with deficiency or overexpression prompting autoimmune diseases. Better understanding of the molecular pathways involved in the intracellular signaling downstream of SLAM could provide treatment targets for these autoimmune diseases.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Anca D Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020279. [PMID: 33451089 PMCID: PMC7828503 DOI: 10.3390/cancers13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable hematological malignancy characterized by an increase in abnormal plasma cells. Disease progression, drug resistance, and immunosuppression in MM are associated with immune-related molecules, such as immune checkpoint and co-stimulatory molecules, present in the tumor microenvironment. Novel agents targeting these cell-surface molecules are currently under development, including monoclonal antibodies, bispecific monoclonal antibodies, and chimera antigen receptor T-cell therapies. In this review, we focus on the signaling lymphocytic activation molecule family receptors and provide an overview of their biological functions and novel therapies in MM. Abstract The signaling lymphocytic activation molecule (SLAM) family receptors are expressed on various immune cells and malignant plasma cells in multiple myeloma (MM) patients. In immune cells, most SLAM family molecules bind to themselves to transmit co-stimulatory signals through the recruiting adaptor proteins SLAM-associated protein (SAP) or Ewing’s sarcoma-associated transcript 2 (EAT-2), which target immunoreceptor tyrosine-based switch motifs in the cytoplasmic regions of the receptors. Notably, SLAMF2, SLAMF3, SLAMF6, and SLAMF7 are strongly and constitutively expressed on MM cells that do not express the adaptor proteins SAP and EAT-2. This review summarizes recent studies on the expression and biological functions of SLAM family receptors during the malignant progression of MM and the resulting preclinical and clinical research involving four SLAM family receptors. A better understanding of the relationship between SLAM family receptors and MM disease progression may lead to the development of novel immunotherapies for relapse prevention.
Collapse
|
7
|
Ishibashi M, Sunakawa-Kii M, Kaito Y, Kinoshita R, Asayama T, Kuribayashi Y, Inokuchi K, Morita R, Tamura H. The SLAMF3 rs509749 polymorphism correlates with malignant potential in multiple myeloma. Exp Hematol 2020; 90:72-79. [PMID: 32818503 DOI: 10.1016/j.exphem.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
The signaling lymphocytic activation molecule family 3 (SLAMF3) is highly expressed on plasma cells from patients with multiple myeloma (MM) and induces high malignant potential by ERK signaling mediated via the interaction with adaptor proteins SHP2 and GRB2. This study focused on the single-nucleotide polymorphism (SNP) of the SLAMF3 gene (rs509749, 1804A>G, M602V) in MM. The SNP G allele was a major type, and the frequencies of the GG, GA, and AA genotypes were 61.8%, 29.4%, and 8.8%, respectively, in patients with MM, which was almost the same as in healthy the control group in the Japanese population. Interestingly, patients with GG genotypes had significantly shorter overall survival times than patients with GA/AA genotypes. Consistent with those results, SLAMF3-overexpressing KMS-34 cells with the G allele (V602) had higher cell proliferation potential and were more resistant to anti-MM agents than those with the A allele (M602). When those cells were subcutaneously inoculated into NOG mice, tumor sizes in mice receiving V602 cells rapidly increased, and survival was significantly shorter than in mice injected with M602 cells. Furthermore, SLAMF3 V602 molecules bound more tightly to SHP2 and GRB2, with increased SHP2 and ERK phosphorylation compared with M602 cells. The mRNA expression of cell cycle-related genes (CCND1 and CCNE1) and anti-apoptotic genes (BCL2L and p21) was increased in V602 cells compared with M602 cells. The results thus suggested that the G allele of SLAMF3 SNP rs509749 may be associated with MM disease progression.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | | | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan; Division of Diabetes, Endocrinology and Hematology, Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan.
| |
Collapse
|
8
|
Crispin JC, Hedrich CM, Suárez-Fueyo A, Comte D, Tsokos GC. SLE-Associated Defects Promote Altered T Cell Function. Crit Rev Immunol 2019; 37:39-58. [PMID: 29431078 DOI: 10.1615/critrevimmunol.2018025213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease linked to profound defects in the function and phenotype of T lymphocytes. Here, we describe abnormal signaling pathways that have been documented in T cells from patients with SLE and discuss how they impact gene expression and immune function, in order to understand how they contribute to disease development and progression.
Collapse
Affiliation(s)
- Jose C Crispin
- Departamento de Inmunologia y Reumatologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Abel Suárez-Fueyo
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Denis Comte
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - George C Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Comte D, Karampetsou MP, Humbel M, Tsokos GC. Signaling lymphocyte activation molecule family in systemic lupus erythematosus. Clin Immunol 2018; 204:57-63. [PMID: 30415085 DOI: 10.1016/j.clim.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by a breakdown in immune tolerance leading to the development of auto-reactive lymphocytes and autoantibodies. Recent findings have provided new insight on the role of the signaling lymphocytic activation molecule family (SLAMF) receptors, a group of nine co-regulatory molecules involved in the activation of hematopoietic cells, and their downstream protein SLAM-associated protein (SAP), into the pathogenesis of SLE. This review summarizes the current knowledge on SLAMF in human SLE immunopathogenesis, and the importance of SLAMF molecules as new therapeutic targets.
Collapse
Affiliation(s)
- Denis Comte
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland.
| | | | - Morgane Humbel
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
10
|
The role of surface molecule CD229 in Multiple Myeloma. Clin Immunol 2018; 204:69-73. [PMID: 30326256 DOI: 10.1016/j.clim.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023]
Abstract
The outcome of Multiple Myeloma (MM) patients has dramatically improved, however, most patients will still succumb to their disease. Additional therapeutic options are urgently needed and novel immunotherapies are enormously promising in the therapeutic armamentarium against MM. The first step in the development of any immunotherapy needs to be the identification of an appropriate target structure. In this review we present the current knowledge on surface molecule CD229, a member of the Signaling Lymphocyte Activation (SLAM) family of immune receptors. We believe that based on its characteristics, including (1) strong and homogenous expression on all myeloma cells, (2) expression on myeloma precursors, (3) absence from most normal tissues, (4) a central function in the biology of MM, CD229 (SLAMF3) represents a promising target for anti-MM immunotherapies. The introduction of novel anti-CD229 approaches into the clinic will hopefully lead to more durable responses, or maybe even cures, in MM.
Collapse
|
11
|
Karampetsou MP, Comte D, Kis-Toth K, Kyttaris VC, Tsokos GC. Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus. PLoS One 2017; 12:e0186073. [PMID: 29020082 PMCID: PMC5636110 DOI: 10.1371/journal.pone.0186073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus (SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lymphocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed predominantly on hematopoietic cells. Activation of cells of the adaptive immune system is aberrant in SLE and dysregulated expression of certain SLAMF molecules has been reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells, monocytes, and their respective differentiated subsets, in patients with SLE and healthy controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T cells showed a slight increase in SLAMF3 levels. No differences were seen in the expression of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the expression of various SLAMF receptors is dysregulated in SLE and may contribute to the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Maria P. Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Denis Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Katalin Kis-Toth
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vasileios C. Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George C. Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, Pridans C, Tsang HG, Wu C, Afrasiabi C, Watson M, Whitelaw CB, Freeman TC, Summers KM, Archibald AL, Hume DA. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet 2017; 13:e1006997. [PMID: 28915238 PMCID: PMC5626511 DOI: 10.1371/journal.pgen.1006997] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Collapse
Affiliation(s)
- Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Iseabail L. Farquhar
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rachel Young
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hiu G. Tsang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Cyrus Afrasiabi
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
13
|
Putlyaeva L, Schwartz A, Klepikova A, Vorontsov I, Kulakovskiy I, Kuprash D. The Minor Variant of the Single-Nucleotide Polymorphism rs3753381 Affects the Activity of a SLAMF1 Enhancer. Acta Naturae 2017; 9:94-102. [PMID: 29104781 PMCID: PMC5662279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
The SLAMF1 gene encodes CD150, a transmembrane glycoprotein expressed on the surface of T and B-lymphocytes, NK-cells, dendritic cells, and subpopulations of macrophages and basophils. We investigated the functional regulatory polymorphisms of the SLAMF1 locus associated with autoimmune processes, using bioinformatics and a mutational analysis of the regulatory elements overlapping with polymorphic positions. In the reporter gene assay in MP-1 and Raji B-cell lines, the enhancer activity of the regulatory region of the locus containing the rs3753381 polymorphism demonstrated a twofold increase upon the introduction of the rs3753381 minor variant (G → A) associated with myasthenia gravis. An analysis of the nucleotide context in the vicinity of rs3753381 revealed that the minor version of this polymorphism improves several binding sites for the transcription factors of FOX and NFAT, and RXR nuclear receptors. All mutations that disrupt any of these sites lead to a decrease in the enhancer activity both in MP1 and in Raji cells, and each of the two B-cell lines expresses a specific set of these factors. Thus, the minor variant of the rs3753381 polymorphism may contribute to the development of myasthenia gravis by modulating SLAMF1 expression, presumably in pathogenic B-lymphocytes.
Collapse
Affiliation(s)
- L.V. Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow, 119991, Russia
| | - A.M. Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow, 119991, Russia
| | - A.V. Klepikova
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Bolshoy Karetny per. 19, bldg. 1, Moscow, 127051, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, bldg. 40, Moscow, 119234, Russia
| | - I.E. Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, Moscow, 119991 , Russia
| | - I.V. Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow, 119991, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, Moscow, 119991 , Russia
| | - D.V. Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234 , Russia
| |
Collapse
|
14
|
Engagement of SLAMF3 enhances CD4+ T-cell sensitivity to IL-2 and favors regulatory T-cell polarization in systemic lupus erythematosus. Proc Natl Acad Sci U S A 2016; 113:9321-6. [PMID: 27482100 DOI: 10.1073/pnas.1605081113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling lymphocytic activation molecule family 3 (SLAMF3/Ly9) is a coregulatory molecule implicated in T-cell activation and differentiation. Systemic lupus erythematosus (SLE) is characterized by aberrant T-cell activation and compromised IL-2 production, leading to abnormal regulatory T-cell (Treg) development/function. Here we show that SLAMF3 functions as a costimulator on CD4(+) T cells and influences IL-2 response and T helper cell differentiation. SLAMF3 ligation promotes T-cell responses to IL-2 via up-regulation of CD25 in a small mothers against decapentaplegic homolog 3 (Smad3)-dependent mechanism. This augments the activation of the IL-2/IL-2R/STAT5 pathway and enhances cell proliferation in response to exogenous IL-2. SLAMF3 costimulation promotes Treg differentiation from naïve CD4(+) T cells. Ligation of SLAMF3 receptors on SLE CD4(+) T cells restores IL-2 responses to levels comparable to those seen in healthy controls and promotes functional Treg generation. Taken together, our results suggest that SLAMF3 acts as potential therapeutic target in SLE patients by augmenting sensitivity to IL-2.
Collapse
|
15
|
Karampetsou MP, Comte D, Kis-Toth K, Terhorst C, Kyttaris VC, Tsokos GC. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production. THE JOURNAL OF IMMUNOLOGY 2016; 196:4915-24. [PMID: 27183584 DOI: 10.4049/jimmunol.1501523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
Abstract
T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype.
Collapse
Affiliation(s)
- Maria P Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Denis Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Service d'Immunologie et Allergie, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; and
| | - Katalin Kis-Toth
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|