1
|
Nogueira JDS, Gomes TR, Secco DA, de Almeida IS, da Costa ASMF, Cobas RA, Costa Dos Santos G, Gomes MB, Porto LC. Type 1 Diabetes Brazilian patients exhibit reduced frequency of recent thymic emigrants in regulatory CD4 +CD25 +Foxp3 +T cells. Immunol Lett 2024; 267:106857. [PMID: 38604551 DOI: 10.1016/j.imlet.2024.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
To control immune responses, regulatory CD4+CD25+Foxp3+ T cells (Treg) maintain their wide and diverse repertoire through continuous arrival of recent thymic emigrants (RTE). However, during puberty, the activity of RTE starts to decline as a natural process of thymic involution, introducing consequences, not completely described, to the repertoire. Type 1 diabetes (T1D) patients show quantitative and qualitative impairments on the Treg cells. Our aim was to evaluate peripheral Treg and RTE cell frequencies, in T1D patients from two distinct age groups (young and adults) and verify if HLA phenotypes are concomitant associated. To this, blood samples from Brazilian twenty established T1D patients (12 young and 8 adults) and twenty-one healthy controls (11 young and 10 adults) were analyzed, by flow cytometry, to verify the percentages of CD4, Treg (CD4+CD25+Foxp3+) and the subsets of CD45RA+ (naive) and CD31+(RTE) within then. Furthermore, the HLA typing was also set. We observed that the young established T1D patients feature decreased frequencies in total Treg cells and naive RTE within Treg cells. Significant prevalence of HLA alleles, associated with risk, in T1D patients, was also identified. Performing a multivariate analysis, we confirmed that the cellular changes described offers significant variables that distinct T1D patients from the controls. Our data collectively highlight relevant aspects about homeostasis imbalances in the Treg cells of T1D patients, especially in young, and disease prognosis; that might contribute for future therapeutic strategies involving Treg cells manipulation.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thamires Rodrigues Gomes
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Danielle Angst Secco
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Inez Silva de Almeida
- Nursing Faculty, Department of Nursing Fundamentals, Ambulatory of the Adolescent Health Studies Center (NESA), Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Roberta Arnoldi Cobas
- Ambulatory of Diabetes, Piquet Carneiro Polyclinic, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos
- Laboratory of Metabolomics (LabMet), IBRAG, Rio de Janeiro State University, Rio de Janeiro RJ Brazil
| | - Marília Brito Gomes
- Ambulatory of Diabetes, Piquet Carneiro Polyclinic, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Luís Cristóvão Porto
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Hu Y, Qian C, Sun H, Li Q, Wang J, Hua H, Dai Z, Li J, Li T, Ding Y, Yang X, Zhang W. Differences in epithelial-mesenchymal-transition in paraquat-induced pulmonary fibrosis in BALB/C and BALB/C (nu/nu) nude mice. Biomed Pharmacother 2021; 143:112153. [PMID: 34507117 DOI: 10.1016/j.biopha.2021.112153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to the toxic herbicide paraquat (PQ) can lead to the active absorption and enrichment of alveolar epithelial cells, resulting in pulmonary fibrosis and respiratory failure. At present, no effective clinical treatment is available. Notably, however, patients infected with human acquired immunodeficiency virus (HIV) (with T lymphocyte deficiency) do not show pulmonary fibrosis after PQ poisoning, suggesting that T lymphocytes may be involved in the occurrence and pathological development of lung fibers following PQ exposure, although relevant studies remain limited. Here, we found that the degree of pulmonary fibrosis induced by intragastric administration of PQ in congenital immunodeficiency BALB/C (nu/nu) nude (T lymphocyte loss) mice was lower than that in normal mice. However, pulmonary fibrosis was aggravated after transplantation of BALB/C (nu/nu) T lymphocytes into congenital immunodeficiency mice. This study is the first to report on the involvement of T lymphocytes in the occurrence and pathological development of lung fibers induced by PQ exposure. Thus, T cells may be an important cellular target for the clinical treatment of pulmonary fibrosis caused by PQ.
Collapse
Affiliation(s)
- Yegang Hu
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China
| | - Chuanyun Qian
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Qiankui Li
- School of Food and Drug, Shandong Institute of Commerce and Technology, 250014 Jinan, Shandong, China
| | - Jinde Wang
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Hairong Hua
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Zichao Dai
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Jintao Li
- Kunming Medical University, 650500 Kunming, Yunnan, China
| | - Tao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014 Jinan, Shandong, China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medical University, 261000 Weifang, Shandong, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, 650500 Kunming, Yunnan, China.
| | - Wei Zhang
- Emergency Department, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, 650032 Kunming, Yunnan, China.
| |
Collapse
|
3
|
Shelyakin PV, Lupyr KR, Egorov ES, Kofiadi IA, Staroverov DB, Kasatskaya SA, Kriukova VV, Shagina IA, Merzlyak EM, Nakonechnaya TO, Latysheva EA, Manto IA, Khaitov MR, Lukyanov SA, Chudakov DM, Britanova OV. Naïve Regulatory T Cell Subset Is Altered in X-Linked Agammaglobulinemia. Front Immunol 2021; 12:697307. [PMID: 34489944 PMCID: PMC8417104 DOI: 10.3389/fimmu.2021.697307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia R Lupyr
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Kofiadi
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valeriia V Kriukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Irina A Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana O Nakonechnaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Irina A Manto
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Musa R Khaitov
- FSBI "NRC Institute of Immunology" FMBA of Russia, Moscow, Russia
| | - Sergey A Lukyanov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Vianna PHO, Canto FB, Nogueira JS, Nunes CFCG, Bonomo AC, Fucs R. Critical influence of the thymus on peripheral T cell homeostasis. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:474-486. [PMID: 27980781 PMCID: PMC5134722 DOI: 10.1002/iid3.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023]
Abstract
Introduction A tight balance between regulatory CD4+Foxp3+ (Treg) and conventional CD4+Foxp3− (Tconv) T cell subsets in the peripheral compartment, maintained stable throughout most of lifetime, is essential for preserving self‐tolerance along with efficient immune responses. An excess of Treg cells, described for aged individuals, may critically contribute to their reported immunodeficiency. In this work, we investigated if quantitative changes in thymus emigration may alter the Treg/Tconv homeostasis regardless of the aging status of the peripheral compartment. Methods We used two different protocols to modify the rate of thymus emigration: thymectomy of adult young (4–6 weeks old) mice and grafting of young thymus onto aged (18 months old) hosts. Additionally, lymphoid cells from young and aged B6 mice were intravenously transferred to B6.RAG2−/− mice. Alterations in Treg and Tconv peripheral frequencies following these protocols were investigated after 30 days by flow cytometry. Results Thymectomized young mice presented a progressive increase in the Treg cell frequency, while the grafting of a functional thymus in aged mice restored the young‐like physiological Treg/Tconv proportion. Strikingly, T cells derived from young or aged splenocytes colonized the lymphopenic periphery of RAG−/− hosts to the same extent, giving rise to similarly elevated Treg cell levels irrespective of the age of the donor population. In the absence of thymus output, the Treg subset seems to survive longer, as confirmed by their lower proportion of Annexin‐V+ cells. Conclusions Our data suggest that the thymus‐emigrating population, harboring an adequate proportion of Treg/Tconv lymphocytes, may be essential to keep the Treg cell balance, independently of age‐related shifts intrinsic to the peripheral environment or to the T cell biology.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Vianna
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Fábio B Canto
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Jeane S Nogueira
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de ImunologiaInstituto de Microbiologia Paulo de Goés (IMPG)-Universidade Federal do Rio de JaneiroRio de Janeiro-RJBrazil; Departamento de ImunobiologiaInstituto de Biologia-Universidade Federal FluminenseNiterói-RJBrazil
| | - Adriana César Bonomo
- Programa FIOCANCER VPPLR-Instituto Oswaldo Cruz-FIOCRUZ Rio de Janeiro-RJ Brazil
| | - Rita Fucs
- Departamento de Imunobiologia Instituto de Biologia-Universidade Federal Fluminense Niterói-RJ Brazil
| |
Collapse
|
5
|
Enlarged colitogenic T cell population paradoxically supports colitis prevention through the B-lymphocyte-dependent peripheral generation of CD4(+)Foxp3(+) Treg cells. Sci Rep 2016; 6:28573. [PMID: 27353032 PMCID: PMC4926115 DOI: 10.1038/srep28573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Intestinal inflammation can be induced by the reconstitution of T/B cell-deficient mice with low numbers of CD4+ T lymphocytes depleted of CD25+Foxp3+ regulatory T cells (Treg). Using RAG-knockout mice as recipients of either splenocytes exclusively depleted of CD25+ cells or FACS-purified CD4+CD25−Foxp3− T cells, we found that the augmentation of potentially colitogenic naïve T cell numbers in the inoculum was unexpectedly beneficial for the suppression of colon disease and maintenance of immune homeostasis. Protection against T cell-mediated colitis correlated with a significant increment in the frequency of peripherally-induced CD4+CD25+Foxp3+ T (pTreg) cells, especially in the mesenteric lymph nodes, an effect that required the presence of B cells and CD4+CD25−Foxp3+ cells in physiological proportions. Our findings support a model whereby the interplay between B lymphocytes and a diversified naïve T cell repertoire is critical for the generation of CD4+CD25+Foxp3+ pTreg cells and colitis suppression.
Collapse
|