1
|
Iqbal H, Rhee DK. Intranasal Immunization of Pneumococcal pep27 Mutant Attenuates Allergic and Inflammatory Diseases by Upregulating Skin and Mucosal Tregs. Vaccines (Basel) 2024; 12:737. [PMID: 39066375 PMCID: PMC11281725 DOI: 10.3390/vaccines12070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional immunization methods such as intramuscular injections lack effective mucosal protection against pathogens that enter through the mucosal surfaces. Moreover, conventional therapy often leads to adverse events and compromised immunity, followed by complicated outcomes, leading to the need to switch to other options. Thus, a need to develop safe and effective treatment with long-term beneficial outcomes to reduce the risk of relapse is mandatory. Mucosal vaccines administered across mucosal surfaces, such as the respiratory or intestinal mucosa, to prompt robust localized and systemic immune responses to prevent the public from acquiring pathogenic diseases. Mucosal immunity contains a unique immune cell milieu that selectively identify pathogens and limits the transmission and progression of mucosal diseases, such as allergic dermatitis and inflammatory bowel disease (IBD). It also offers protection from localized infection at the site of entry, enables the clearance of pathogens on mucosal surfaces, and leads to the induction of long-term immunity with the ability to shape regulatory responses. Regulatory T (Treg) cells have been a promising strategy to suppress mucosal diseases. To find advances in mucosal treatment, we investigated the therapeutic effects of intranasal pep27 mutant immunization. Nasal immunization protects mucosal surfaces, but nasal antigen presentation appears to entail the need for an adjuvant to stimulate immunogenicity. Here, a novel method is developed to induce Tregs via intranasal immunization without an adjuvant to potentially overcome allergic diseases and gut and lung inflammation using lung-gut axis communication in animal models. The implementation of the pep27 mutant for these therapies should be preceded by studies on Treg resilience through clinical translational studies on dietary changes.
Collapse
Affiliation(s)
- Hamid Iqbal
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan;
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Pizzano M, Vereertbrugghen A, Cernutto A, Sabbione F, Keitelman IA, Shiromizu CM, Vera Aguilar D, Fuentes F, Giordano MN, Trevani AS, Galletti JG. Transient Receptor Potential Vanilloid-1 Channels Facilitate Axonal Degeneration of Corneal Sensory Nerves in Dry Eye. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:810-827. [PMID: 38325553 DOI: 10.1016/j.ajpath.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.
Collapse
Affiliation(s)
- Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene A Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Mirta N Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía S Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
4
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
5
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
6
|
Dong X, Gao Y, Li M, Wang D, Li J, Zhang Y. Characteristics of Chest HRCT and pulmonary function tests in elderly-onset primary Sjögren syndrome with interstitial lung disease. Medicine (Baltimore) 2023; 102:e32952. [PMID: 36827063 PMCID: PMC11309595 DOI: 10.1097/md.0000000000032952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
To investigate the characteristics of elderly-onset primary Sjögren syndrome (pSS) using chest high-resolution computed tomography and pulmonary function tests (PFTs). The data of 102 patients with pSS with interstitial lung disease were retrospectively analyzed. The chest high-resolution computed tomography, PFTs, and clinical and laboratory data were evaluated based on the age of onset: elderly-onset pSS (EopSS) (≥65 years) versus adult-onset pSS (AopSS) (<65 years). Among the 102 patients with pSS-interstitial lung disease, there were 34 of EopSS and 68 of AopSS. EopSS patients presented a significantly higher incidence of usual interstitial pneumonia (EopSS [38.2%] vs AopSS [11.8%], P = .005) and a significantly lower incidence of nonspecific interstitial pneumonia (EopSS [8.8%] vs AopSS [25%], P = .042). Unlike the AopSS group, the significant decreases in the vital capacity (VC) (the percentage of the predicted value of each parameter [%pred]) and the forced VC (%pred), PFTs showed that VC (%pred) and forced VC (%pred) were >80% in the EopSS group. Forced expiratory volume in 1 second significantly decreased and residual volume significantly increased in the EopSS group (P = .001). The percentage of small airway disease was significantly higher in the EopSS group (P = .021). Diffusing capacity of the lung for carbon monoxide/alveolar volume (%pred) was <80% in both groups with a lower percentage in the AopSS group. Usual interstitial pneumonia is more common in the EopSS group. Although there is no significant difference in ventilation dysfunction between the EopSS and AopSS groups, small airway disease is more common in the EopSS group, while restrictive ventilatory dysfunction is more common in the AopSS group. Therefore, the EopSS group has its own characteristics and it is worth studying and noting.
Collapse
Affiliation(s)
- Xin Dong
- Department of Rheumatology, Beijing Chao-yang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Yanli Gao
- Department of Radiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Man Li
- Department of Radiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yongfeng Zhang
- Department of Rheumatology, Beijing Chao-yang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| |
Collapse
|
7
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
8
|
Corneal nerves and their role in dry eye pathophysiology. Exp Eye Res 2022; 222:109191. [PMID: 35850173 DOI: 10.1016/j.exer.2022.109191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.
Collapse
|
9
|
Suárez-Cortés T, Merino-Inda N, Benitez-Del-Castillo JM. Tear and ocular surface disease biomarkers: A diagnostic and clinical perspective for ocular allergies and dry eye disease. Exp Eye Res 2022; 221:109121. [PMID: 35605673 DOI: 10.1016/j.exer.2022.109121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Validated biomarkers to be used as biological tools for managing ocular surface diseases (OSDs) are still an unmet need in daily clinical practice. Many studies have contributed to the already extensive list of candidate biomarkers for these disorders. Dry eye (DE) and ocular allergy (OA) are complex and multifactorial diseases, often coexisting and with overlapping symptoms. The purpose of this review is to present a comprehensive updated revision of the most relevant biomarkers of DE and OA, with an emphasis on quantitative analyses and correlations with clinical parameter data. Analysis of biomarkers common for these pathologies has highlighted an important physiological process. Namely, the interleukin proteins (IL-1α, IL-1β and IL-17), tumour necrotic factor (TNFα) and interferon gamma (IFNγ; Th1-Th7 pathway) and IL-4, IL-5 and IL-13 (Th2 pathway) seem to represent similar inflammatory mechanisms. Moreover, changes in the levels of mucins (MUC1, MUC2, MUC4, MUC5 and MUC16) are common alterations in the tear film mucous layer. We also examine the current state of medical devices and the main limitations to their use in clinical practice. Translational research in biomarkers for clinical practice depends on a feasible transition from the laboratory to the point-of-care. This requires large-scale, coordinated clinical validation campaigns to select the biomarkers with the highest specificity and sensitivity and significant correlation with clinical parameters. Moreover, technical limitations of multiplexed quantitation systems must be overcome to detect and measure the levels of several biomarkers in very small samples. To ensure the future of biomarker research, significant progress is necessary in a number of fields. There is an urgent need for global unification of clinical classification and diagnostics criteria. Widespread integration of proteomic and transcriptomic data is paramount for performing meaningful analyses using appropriate bioinformatics tools and artificial intelligence systems.
Collapse
|
10
|
The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022; 14:nu14050949. [PMID: 35267924 PMCID: PMC8912763 DOI: 10.3390/nu14050949] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and within the epithelial cells, plays a special role in health and disease. While there is growing knowledge on the changes to the different layers associated with disease development, the barrier function also plays an important role during aging. Besides changes in the composition and function of cellular junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is also reflected by substantial differences in the microbial composition throughout the life span. Even though it remains difficult to define physiological age-related changes and to distinguish them from early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features associated with longevity. The knowledge reviewed in this narrative review article might contribute to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted interventions to improve overall barrier function will be important disease prevention strategies for healthy aging in the future.
Collapse
|
11
|
Yu Z, Li J, Govindarajan G, Hamm-Alvarez S, Alam J, Li DQ, de Paiva CS. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res 2022; 214:108895. [PMID: 34910926 PMCID: PMC8908478 DOI: 10.1016/j.exer.2021.108895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 h disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - Jinmiao Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Sarah Hamm-Alvarez
- Department of Ophthalmology and Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States
| | - Jehan Alam
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | - De-Quan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
12
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|
13
|
Xue JF, Li DF, Wang YN, Chen C, Yang RF, Zhou QJ, Liu T, Xie LX, Dong YL. Midterm outcomes of penetrating keratoplasty following allogeneic cultivated limbal epithelial transplantation in patients with bilateral limbal stem cell deficiency. Int J Ophthalmol 2021; 14:1690-1699. [PMID: 34804858 DOI: 10.18240/ijo.2021.11.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate the midterm outcomes of penetrating keratoplasty (PK) following allogeneic cultivated limbal epithelial transplantation (CLET) for bilateral total limbal stem cell deficiency (LSCD). METHODS Ten patients (10 eyes) with bilateral LSCD were enrolled in this prospective noncomparative case series study. Each participant underwent PK approximately 6mo after a CLET. Topical tacrolimus, topical and systemic steroids, and oral ciclosporin were administered postoperatively. Best-corrected visual acuity (BCVA), intraocular pressure (IOP), ocular surface grading scores (OSS), corneal graft epithelial rehabilitation, persistent epithelial defect (PED), immunological rejection, and graft survival rate were assessed. RESULTS The time interval between PK and allogeneic CLET was 6.90±1.29 (6-10)mo. BCVA improved from 2.46±0.32 logMAR preoperatively to 0.77±0.55 logMAR post-PK (P<0.001). Kaplan-Meier analysis of mean graft survival revealed graft survival rates of 100% at 12 and 24mo and 80.0% at 36mo. PEDs appeared in 5 eyes at different periods post-PK, and graft rejection occurred in 4 eyes. The total OSS decreased from 12.4±4.4 before allogeneic CLET to 1.4±1.51 after PK. CONCLUSION A sequential therapy design of PK following allogeneic CLET can maintain a stable ocular surface with improved BCVA despite the relatively high graft rejection rate.
Collapse
Affiliation(s)
- Jun-Fa Xue
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan 271016, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Dong-Fang Li
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Ya-Ni Wang
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Department of Ophthalmology, Shandong University, Jinan 250100, Shandong Province, China
| | - Ru-Fei Yang
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| | - Qing-Jun Zhou
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| | - Li-Xin Xie
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| | - Yan-Ling Dong
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| |
Collapse
|