1
|
Sapra L, Saini C, Sharma S, Nanda D, Nilakhe A, Chattopadhyay N, Meena AS, Mishra PK, Gupta S, Garg B, Manhas V, Srivastava RK. Targeting the osteoclastogenic cytokine IL-9 as a novel immunotherapeutic strategy in mitigating inflammatory bone loss in post-menopausal osteoporosis. JBMR Plus 2024; 8:ziae120. [PMID: 39399159 PMCID: PMC11470976 DOI: 10.1093/jbmrpl/ziae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Recent discoveries have established the pivotal role of IL-9-secreting immune cells in a wide spectrum of inflammatory and autoimmune diseases. However, little is known about how IL-9 contributes to the etiology of inflammatory bone loss in PMO. We observed that IL-9 has a pathological impact on inflammatory bone loss in ovariectomized (Ovx) mice. Our in vivo temporal kinetics analysis revealed that estrogen deprivation enhanced the production of IL-9 from Th cells (majorly Th9 and Th17). Both our ex vivo and in vivo studies corroborated these findings in Ovx mice, as estrogen diminishes the potential of Th9 cells to produce IL-9. Mechanistically, Th9 cells in an IL-9-dependent manner enhance osteoclastogenesis and thus could establish themselves as a novel osteoclastogenic Th cell subset. Therapeutically neutralizing/blocking IL-9 improves bone health by inhibiting the differentiation and function of osteoclasts, Th9, and Th17 cells along with maintaining gut integrity in Ovx mice. Post-menopausal osteoporotic patients have increased IL-9-secreting Th9 cells, which may suggest a potential role for IL-9 in the development of osteoporosis. Collectively, our study identifies IL-9-secreting Th9 cells as a driver of bone loss with attendant modulation of gut-immune-bone axis, which implies IL-9-targeted immunotherapies as a potential strategy for the management and treatment of inflammatory bone loss observed in PMO.
Collapse
Affiliation(s)
- Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Chaman Saini
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Shivani Sharma
- Division of Endocrinology, Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Dibyani Nanda
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Avtar Singh Meena
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP 462001, India
| | - Sarika Gupta
- National Institute of Immunology (NII), New Delhi 110067, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vikrant Manhas
- Department of Orthopaedics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
2
|
He E, Sui H, Wang H, Zhao X, Guo W, Dai Z, Wu Z, Huang K, Zhao Q. Interleukin-19 in Bone Marrow Contributes to Bone Loss Via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice. Stem Cell Rev Rep 2024; 20:1311-1324. [PMID: 38502291 DOI: 10.1007/s12015-024-10709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Cellular senescence is an important process related to the pathogenic mechanism of different disorders, especially bone loss. During senescence, bone marrow stromal cells (BMSCs) lose their self-renewal and functional differentiation abilities. Therefore, finding signals opposing the osteogenic differentiation of BMSCs within bone marrow microenvironment is the important for elucidating these above-mentioned mechanisms. Inflammatory cytokines affect bone physiology and remodeling. However, the function of interleukin-19 (IL-19) in skeletal system remains unclear. METHODS The mouse model of IL-19 knockout was established through embryonic stem cell injection for analyzing how IL-19 affected bone formation. Micro-CT examinations were performed to evaluate bone microstructures. We performed a three-point bending test to measure bone stiffness and the ultimate force. Antibody arrays were performed to detect interleukin family members in bone marrow aspirates. BMSCs were cultured and induced for osteogenic differentiation. RESULTS According to our findings, there was increased IL-19 accumulation within bone marrow in old mice relative to that in their young counterparts, resulting in bone loss via the inhibition of BMSCs osteogenic differentiation. Among Wnt/β-catenin pathway members, IL-19 strongly upregulated sFRP1 via STAT3 phosphorylation. The inhibition of STAT3 and sFRP1 abolished IL-19's inhibition against the BMSCs osteogenic differentiation. CONCLUSION To sum up, IL-19 inhibited BMSCs osteogenic differentiation in old mice. Our findings shed novel lights on pathogenic mechanism underlying age-related bone loss and laid a foundation for further research on identifying novel targets to treat senile osteoporosis.
Collapse
Affiliation(s)
- Enjun He
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Sui
- Department of Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Hongjie Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Henan University, Henan Provincial People's Hospital, Henan, Zhengzhou, China
| | - Weihong Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Dai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkai Wu
- Department of Pediatric Orthopaedics, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital of Jing'an District, Shanghai, China.
| | - Qinghua Zhao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Chakraborty S, Gupta R, Kubatzky KF, Kar S, Kraus FV, Souto-Carneiro MM, Lorenz HM, Kumar P, Kumar V, Mitra DK. Negative impact of Interleukin-9 on synovial regulatory T cells in rheumatoid arthritis. Clin Immunol 2023; 257:109814. [PMID: 37879380 PMCID: PMC7615987 DOI: 10.1016/j.clim.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
In Rheumatoid Arthritis (RA), regulatory T cells (Tregs) have been found to be enriched in the synovial fluid. Despite their accumulation, they are unable to suppress synovial inflammation. Recently, we showed the synovial enrichment of interleukin-9 (IL-9) producing helper T cells and its positive correlation with disease activity. Therefore, we investigated the impact of IL-9 on synovial Tregs in RA. Here, we confirmed high synovial Tregs in RA patients, however these cells were functionally impaired in terms of suppressive cytokine production (IL-10 and TGF-β). Abrogating IL-9/ IL-9 receptor interaction could restore the suppressive cytokine production of synovial Tregs and reduce the synovial inflammatory T cells producing IFN-γ, TNF-α, IL-17. However, blocking these inflammatory cytokines failed to show any effect on IL-9 producing T cells, highlighting IL-9's hierarchy in the inflammatory network. Thus, we propose that blocking IL-9 might dampen synovial inflammation by restoring Tregs function and inhibiting inflammatory T cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ranjan Gupta
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Santanu Kar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Franziska V Kraus
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - M Margarida Souto-Carneiro
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Pankaj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
5
|
Amadeu de Oliveira F, Tokuhara CK, Veeriah V, Domezi JP, Santesso MR, Cestari TM, Ventura TMO, Matos AA, Dionísio T, Ferreira MR, Ortiz RC, Duarte MAH, Buzalaf MAR, Ponce JB, Sorgi CA, Faccioli LH, Buzalaf CP, de Oliveira RC. The Multifarious Functions of Leukotrienes in Bone Metabolism. J Bone Miner Res 2023; 38:1135-1153. [PMID: 37314430 DOI: 10.1002/jbmr.4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Leukotrienes (LTs) are derived from arachidonic acid metabolism by the 5-lipoxygenase (5-LO) enzyme. The production of LTs is stimulated in the pathogenesis of rheumatoid arthritis (RA), osteoarthritis, and periodontitis, with a relevant contribution to bone resorption. However, its role in bone turnover, particularly the suppression of bone formation by modulating the function of osteoclasts and osteoblasts, remains unclear. We investigated the effects of LTs on bone metabolism and their impact on osteogenic differentiation and osteoclastogenesis using a 5-LO knockout (KO) mouse model. Results from micro-computed tomography (μCT) analysis of femur from 8-week-old 5-LO-deficient mice showed increased cortical bone and medullary region in females and males and decreased trabecular bone in females. In the vertebra, we observed increased marrow area in both females and males 5-LO KO and decreased trabecular bone only in females 5-LO KO. Immunohistochemistry (IHC) analysis showed higher levels of osteogenic markers tissue-nonspecific alkaline phosphatase (TNAP) and osteopontin (OPN) and lower expression of osteoclastogenic marker tartrate-resistant acid phosphatase (TRAP) in the femurs of 5-LO KO mice versus wild-type (WT). Alkaline phosphatase activity and mineralization assay results showed that the 5-LO absence enhances osteoblasts differentiation and mineralization but decreases the proliferation. Alkaline phosphatase (ALP), Bglap, and Sp7 gene expression were higher in 5-LO KO osteoblasts compared to WT cells. Eicosanoids production was higher in 5-LO KO osteoblasts except for thromboxane 2, which was lower in 5-LO-deficient mice. Proteomic analysis identified the downregulation of proteins related to adenosine triphosphate (ATP) metabolism in 5-LO KO osteoblasts, and the upregulation of transcription factors such as the adaptor-related protein complex 1 (AP-1 complex) in long bones from 5-LO KO mice leading to an increased bone formation pattern in 5-LO-deficient mice. We observed enormous differences in the morphology and function of osteoclasts with reduced bone resorption markers and impaired osteoclasts in 5-LO KO compared to WT osteoclasts. Altogether, these results demonstrate that the absence of 5-LO is related to the greater osteogenic profile. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Flávia Amadeu de Oliveira
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Cintia K Tokuhara
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Vimal Veeriah
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - João Paulo Domezi
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Tania M Cestari
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Adriana A Matos
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago Dionísio
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Marcel R Ferreira
- Institute of Biosciences, São Paulo State University-UNESP, Botucatu, SP, Brazil
| | - Rafael C Ortiz
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Marco A H Duarte
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - José B Ponce
- Department of Medicine, University Center of Adamantina, Adamantina, SP, Brazil
- Department of Medicine, Faculdades de Dracena, Dracena, SP, Brazil
| | - Carlos A Sorgi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
6
|
Little-Letsinger SE, Hamilton SE. Leveraging mice with diverse microbial exposures for advances in osteoimmunology. Front Endocrinol (Lausanne) 2023; 14:1168552. [PMID: 37251680 PMCID: PMC10210590 DOI: 10.3389/fendo.2023.1168552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
The skeletal and immune systems are intricately intertwined within the bone marrow microenvironment, a field of study termed osteoimmunology. Osteoimmune interactions are key players in bone homeostasis and remodeling. Despite the critical role of the immune system in bone health, virtually all animal research in osteoimmunology, and more broadly bone biology, relies on organisms with naïve immune systems. Drawing on insights from osteoimmunology, evolutionary anthropology, and immunology, this perspective proposes the use of a novel translational model: the dirty mouse. Dirty mice, characterized by diverse exposures to commensal and pathogenic microbes, have mature immune systems comparable to adult humans, while the naïve immune system of specific-pathogen free mice is akin to a neonate. Investigation into the dirty mouse model will likely yield important insights in our understanding of bone diseases and disorders. A high benefit of this model is expected for diseases known to have a connection between overactivation of the immune system and negative bone outcomes, including aging and osteoporosis, rheumatoid arthritis, HIV/AIDS, obesity and diabetes, bone marrow metastases, and bone cancers.
Collapse
Affiliation(s)
| | - Sara E. Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|