1
|
Gencsoy Eker S, Inetas Yengin G, Tatar C, Oktem G. A Comprehensive Review of the Mechanisms and Clinical Development of Monoclonal Antibodies in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39666264 DOI: 10.1007/5584_2024_838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cancer is still the disease that ranks first in human mortality in the twenty-first century. In the last 20 years, the concept of molecular targeted therapy has come to the fore with the use of small molecule agents or signal transduction inhibitors that show anticancer effects for certain types of cancer. Monoclonal antibodies, which have a therapeutic effect, especially by providing signal transduction inhibition, are used clinically as first-line treatment in various types of cancer. Molecular targeted therapies are critical for eliminating the adverse effects and drug resistance problems that occur in traditional cancer treatments. This review summarizes current information on various targeted therapeutic agents, including the structure and classification of monoclonal antibodies, their production methods and mechanisms of action, the monoclonal antibodies used in clinical trials, the complement system mechanism and cancer relationship, and the relationship between complement-dependent cytotoxicity and monoclonal antibodies.
Collapse
Affiliation(s)
- Selen Gencsoy Eker
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey
| | - Gizem Inetas Yengin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Cansu Tatar
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Gulperi Oktem
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
2
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
3
|
Kim J, Lee BJ, Moon S, Lee H, Lee J, Kim BS, Jung K, Seo H, Chung Y. Strategies to Overcome Hurdles in Cancer Immunotherapy. Biomater Res 2024; 28:0080. [PMID: 39301248 PMCID: PMC11411167 DOI: 10.34133/bmr.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Despite marked advancements in cancer immunotherapy over the past few decades, there remains an urgent need to develop more effective treatments in humans. This review explores strategies to overcome hurdles in cancer immunotherapy, leveraging innovative technologies including multi-specific antibodies, chimeric antigen receptor (CAR) T cells, myeloid cells, cancer-associated fibroblasts, artificial intelligence (AI)-predicted neoantigens, autologous vaccines, and mRNA vaccines. These approaches aim to address the diverse facets and interactions of tumors' immune evasion mechanisms. Specifically, multi-specific antibodies and CAR T cells enhance interactions with tumor cells, bolstering immune responses to facilitate tumor infiltration and destruction. Modulation of myeloid cells and cancer-associated fibroblasts targets the tumor's immunosuppressive microenvironment, enhancing immunotherapy efficacy. AI-predicted neoantigens swiftly and accurately identify antigen targets, which can facilitate the development of personalized anticancer vaccines. Additionally, autologous and mRNA vaccines activate individuals' immune systems, fostering sustained immune responses against cancer neoantigens as therapeutic vaccines. Collectively, these strategies are expected to enhance efficacy of cancer immunotherapy, opening new horizons in anticancer treatment.
Collapse
Affiliation(s)
- Jihyun Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Joon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehoon Moon
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| | - Hojeong Lee
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Juyong Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
- Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Arontier Co., Seoul 06735, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul 08826, Republic of Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyungseok Seo
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonseok Chung
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, College of Pharmacy,Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Ye QN, Zhu L, Liang J, Zhao DK, Tian TY, Fan YN, Ye SY, Liu H, Huang XY, Cao ZT, Shen S, Wang J. Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity. Nat Commun 2024; 15:6211. [PMID: 39043643 PMCID: PMC11266419 DOI: 10.1038/s41467-024-50474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
The functions of natural killer (NK) and T cells in innate and adaptive immunity, as well as their functions in tumor eradication, are complementary and intertwined. Here we show that utilization of multi-specific antibodies or nano-antibodies capable of simultaneously targeting both NK and T cells could be a valuable approach in cancer immunotherapy. Here, we introduce a tri-specific Nano-Antibody (Tri-NAb), generated by immobilizing three types of monoclonal antibodies (mAbs), using an optimized albumin/polyester composite nanoparticle conjugated with anti-Fc antibody. This Tri-NAb, targeting PDL1, 4-1BB, and NKG2A (or TIGIT) simultaneously, effectively binds to NK and CD8+ T cells, triggering their activation and proliferation, while facilitating their interaction with tumor cells, thereby inducing efficient tumor killing. Importantly, the antitumor efficacy of Tri-NAb is validated in multiple models, including patient-derived tumor organoids and humanized mice, highlighting the translational potential of NK and T cell co-targeting.
Collapse
Affiliation(s)
- Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Long Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Jie Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Tai-Yu Tian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Si-Yi Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Hua Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Xiao-Yi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Zhi-Ting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P. R. China.
| |
Collapse
|
5
|
Mohan N, Ayinde S, Peng H, Dutta S, Shen Y, Falkowski VM, Biel TG, Ju T, Wu WJ. Structural and functional characterization of IgG- and non-IgG-based T-cell-engaging bispecific antibodies. Front Immunol 2024; 15:1376096. [PMID: 38863707 PMCID: PMC11165055 DOI: 10.3389/fimmu.2024.1376096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bispecific T-cell-engaging antibodies are a growing class of therapeutics with numerous molecules being tested in clinical trials and, currently, seven of them have received market approval. They are structurally complex and function as adaptors to redirect the cytotoxicity of T cells to kill tumor cells. T-cell-engaging bispecific antibodies can be generally divided into two categories: IgG/IgG-like and non-IgG-like formats. Different formats may have different intrinsic potencies and physiochemical properties, and comprehensive studies are needed to gain a better understanding of how the differences in formats impact on structural and functional characteristics. In this study, we designed and generated bispecific T-cell-engaging antibodies with IgG-like (DVD-Ig) and non-IgG (BiTE) formats. Both target the same pair of antigens (EGFR and CD3) to minimize the possible influence of targets on functional characterization. We performed a side-by-side comparison to assess differences in the physiochemical and biological properties of these two bispecific T-cell-engaging antibodies using a variety of breast and ovarian cancer cell-based functional assays to delineate the structural-functional relationships and anti-tumor activities/potency. We found that the Fc portion of T-cell-engaging bispecific antibodies can significantly impact antigen binding activity, potency, and stability in addition to eliciting different mechanisms of action that contribute the killing of cancer cells.
Collapse
Affiliation(s)
- Nishant Mohan
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Safiat Ayinde
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Hanjing Peng
- Office of Pharmaceutical Manufacturing Assessment, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Shraboni Dutta
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Yi Shen
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Vincent M. Falkowski
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Thomas G. Biel
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Tongzhong Ju
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Wen Jin Wu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
6
|
Wei H, Dong C, Li X. Treatment Options for Hepatocellular Carcinoma Using Immunotherapy: Present and Future. J Clin Transl Hepatol 2024; 12:389-405. [PMID: 38638377 PMCID: PMC11022065 DOI: 10.14218/jcth.2023.00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and the body's immune responses greatly affect its progression and the prognosis of patients. Immunological suppression and the maintenance of self-tolerance in the tumor microenvironment are essential responses, and these form part of the theoretical foundations of immunotherapy. In this review, we first discuss the tumor microenvironment of HCC, describe immunosuppression in HCC, and review the major biomarkers used to track HCC progression and response to treatment. We then examine antibody-based therapies, with a focus on immune checkpoint inhibitors (ICIs), monoclonal antibodies that target key proteins in the immune response (programmed cell death protein 1, anti-cytotoxic T-lymphocyte associated protein 4, and programmed death-ligand 1) which have transformed the treatment of HCC and other cancers. ICIs may be used alone or in conjunction with various targeted therapies for patients with advanced HCC who are receiving first-line treatments or subsequent treatments. We also discuss the use of different cellular immunotherapies, including T cell receptor (TCR) T cell therapy and chimeric antigen receptor (CAR) T cell therapy. We then review the use of HCC vaccines, adjuvant immunotherapy, and oncolytic virotherapy, and describe the goals of future research in the development of treatments for HCC.
Collapse
Affiliation(s)
- Hongbin Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, Gansu, China
- Cancer Prevention and Treatment Center of Lanzhou University School of Medicine, Lanzhou, Gansu, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, Gansu, China
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
9
|
Mathias-Machado MC, de Jesus VHF, Jácome A, Donadio MD, Aruquipa MPS, Fogacci J, Cunha RG, da Silva LM, Peixoto RD. Claudin 18.2 as a New Biomarker in Gastric Cancer-What Should We Know? Cancers (Basel) 2024; 16:679. [PMID: 38339430 PMCID: PMC10854563 DOI: 10.3390/cancers16030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) remains a formidable global health challenge, ranking among the top-five causes of cancer-related deaths worldwide. The majority of patients face advanced stages at diagnosis, with a mere 6% five-year survival rate. First-line treatment for metastatic GC typically involves a fluoropyrimidine and platinum agent combination; yet, predictive molecular markers have proven elusive. This review navigates the evolving landscape of GC biomarkers, with a specific focus on Claudin 18.2 (CLDN18.2) as an emerging and promising target. Recent phase III trials have unveiled the efficacy of Zolbetuximab, a CLDN18.2-targeting antibody, in combination with oxaliplatin-based chemotherapy for CLDN18.2-positive metastatic GC. As this novel therapeutic avenue unfolds, understanding the nuanced decision making regarding the selection of anti-CLDN18.2 therapies over other targeted agents in metastatic GC becomes crucial. This manuscript reviews the evolving role of CLDN18.2 as a biomarker in GC and explores the current status of CLDN18.2-targeting agents in clinical development. The aim is to provide concise insights into the potential of CLDN18.2 as a therapeutic target and guide future clinical decisions in the management of metastatic GC.
Collapse
Affiliation(s)
- Maria Cecília Mathias-Machado
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - Alexandre Jácome
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil;
| | - Mauro Daniel Donadio
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - João Fogacci
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Rio de Janeiro 22775-003, Brazil;
| | - Renato Guerino Cunha
- Cellular Therapy Program, Division of Hematology, Oncoclínicas, São Paulo 04538-132, Brazil;
| | | | - Renata D’Alpino Peixoto
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| |
Collapse
|
10
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|