1
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Huang R, Liu X, Kim J, Deng H, Deng M, Gui X, Chen H, Wu G, Xiong W, Xie J, Lewis C, Homsi J, Yang X, Zhang C, He Y, Lou Q, Smith C, John S, Zhang N, An Z, Zhang CC. LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development. Cancer Immunol Res 2024; 12:350-362. [PMID: 38113030 PMCID: PMC10932818 DOI: 10.1158/2326-6066.cir-23-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The existing T cell-centered immune checkpoint blockade therapies have been successful in treating some but not all patients with cancer. Immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSC), that inhibit antitumor immunity and support multiple steps of tumor development are recognized as one of the major obstacles in cancer treatment. Leukocyte Ig-like receptor subfamily B3 (LILRB3), an immune inhibitory receptor containing tyrosine-based inhibitory motifs (ITIM), is expressed solely on myeloid cells. However, it is unknown whether LILRB3 is a critical checkpoint receptor in regulating the activity of immunosuppressive myeloid cells, and whether LILRB3 signaling can be blocked to activate the immune system to treat solid tumors. Here, we report that galectin-4 and galectin-7 induce activation of LILRB3 and that LILRB3 is functionally expressed on immunosuppressive myeloid cells. In some samples from patients with solid cancers, blockade of LILRB3 signaling by an antagonistic antibody inhibited the activity of immunosuppressive myeloid cells. Anti-LILRB3 also impeded tumor development in myeloid-specific LILRB3 transgenic mice through a T cell-dependent manner. LILRB3 blockade may prove to be a novel approach for immunotherapy of solid cancers.
Collapse
Affiliation(s)
- Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xun Gui
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jade Homsi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xing Yang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Qi Lou
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Caroline Smith
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
A family of unusual immunoglobulin superfamily genes in an invertebrate histocompatibility complex. Proc Natl Acad Sci U S A 2022; 119:e2207374119. [PMID: 36161920 PMCID: PMC9546547 DOI: 10.1073/pnas.2207374119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.
Collapse
|
5
|
Sun Y, Sedgwick AJ, Khan MAAK, Palarasah Y, Mangiola S, Barrow AD. A Transcriptional Signature of IL-2 Expanded Natural Killer Cells Predicts More Favorable Prognosis in Bladder Cancer. Front Immunol 2021; 12:724107. [PMID: 34858395 PMCID: PMC8631443 DOI: 10.3389/fimmu.2021.724107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and secreted factors upregulated in the tumor microenvironment, such as platelet-derived growth factor D (PDGF-DD). In order to elucidate a clinical role for these important regulators of NK cell function in antitumor immunity, we generated transcriptional signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell phenotypes and established their abundance in The Cancer Genome Atlas bladder cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was the most abundant in low and high grades of BLCA tumors and was associated with improved prognosis. In contrast, PDGFD expression was associated with numerous cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell phenotype were associated with a poor BLCA prognosis. Finally, high tumor expression of transcripts encoding the activating NK cell receptors, KLRK1 and the CD160-TNFRSF14 receptor-ligand pair, was strongly correlated with the IL-2-expanded NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we describe may be optimized to improve BLCA patient prognosis and risk stratification in the clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell antitumor immunity in BLCA.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Md Abdullah-Al-Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yaseelan Palarasah
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Dubis J, Niepiekło-Miniewska W, Jędruchniewicz N, Sobczyński M, Witkiewicz W, Zapotoczny N, Kuśnierczyk P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells 2021; 10:cells10123357. [PMID: 34943866 PMCID: PMC8699266 DOI: 10.3390/cells10123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an immune-mediated disease with a genetic component. The multifactorial pathophysiology is not clear and there is still no pharmacotherapy to slow the growth of aneurysms. The signal integration of cell-surface KIRs (killer cell immunoglobulin-like receptors) with HLA (ligands, human leukocyte class I antigen molecules) modulates the activity of natural killer immune cells. The genetic diversity of the KIR/HLA system is associated with the risk of immune disorders. This study was a multivariate analysis of the association between genetic variants of KIRs, HLA ligands, clinical data and AAA formation. Genotyping was performed by single polymerase chain reaction with sequence-specific primers using commercial assays. Patients with HLA-A-Bw4 have a larger aneurysm by an average of 4 mm (p = 0.008). We observed a relationship between aneurysm diameter and BMI in patients with AAA and co-existing CAD; its shape was determined by the presence of HLA-A-Bw4. There was also a nearly 10% difference in KIR3DL1 allele frequency between the study and control groups. High expression of the cell surface receptor KIR3DL1 may protect, to some extent, against AAA. The presence of HLA-A-Bw4 may affect the rate of aneurysm growth and represents a potential regional pathogenetic risk of autoimmune injury to the aneurysmal aorta.
Collapse
Affiliation(s)
- Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland;
- Correspondence: (J.D.); (P.K.)
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | | | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Wojciech Witkiewicz
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Norbert Zapotoczny
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: (J.D.); (P.K.)
| |
Collapse
|
7
|
Wu G, Xu Y, Schultz RD, Chen H, Xie J, Deng M, Liu X, Gui X, John S, Lu Z, Arase H, Zhang N, An Z, Zhang CC. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis. NATURE CANCER 2021; 2:1170-1184. [PMID: 35122056 PMCID: PMC8809885 DOI: 10.1038/s43018-021-00262-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Samuel John
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Sun Y, Sedgwick AJ, Palarasah Y, Mangiola S, Barrow AD. A Transcriptional Signature of PDGF-DD Activated Natural Killer Cells Predicts More Favorable Prognosis in Low-Grade Glioma. Front Immunol 2021; 12:668391. [PMID: 34539622 PMCID: PMC8444979 DOI: 10.3389/fimmu.2021.668391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
The binding of platelet-derived growth factor D (PDGF-DD) to the NKp44 receptor activates a distinct transcriptional program in primary IL-2 expanded human natural killer (NK) cells. We were interested in knowing if the PDGF-DD-NKp44 pathway of NK cell activation might play a clinically relevant role in anti-tumor immunity. In order to address this question, we determined transcriptional signatures unique to resting, IL-2 expanded, and PDGF-DD activated, NK cells, in addition to different T cell subsets, and established the abundance of these immune cell phenotypes in The Cancer Genome Atlas (TCGA) low-grade glioma (LGG) dataset using CIBERSORT. Our results show that LGG patient tumors enriched for either the PDGF-DD activated NK cell or memory CD8+ T cell phenotypes are associated with a more favorable prognosis. Combined cell phenotype analyses revealed that patients with LGG tumors enriched for the PDGF-DD activated NK cell phenotype and the CD4+ T helper cell phenotype had a more favorable prognosis. High expression of transcripts encoding members of the killer cell lectin-like receptor (KLR) family, such as KLRK1 and KLRC2, KLRC3 and KLRC4 in LGG tumors were associated with more favorable prognosis, suggesting that these NK cell family receptors may play a prominent role in LGG anti-tumor immunity. Finally, many of the TCGA findings were reciprocated in LGG patients from the Chinese Glioma Genome Atlas (CGGA) dataset. Our results provide transcriptomic evidence that PDGF-DD activated NK cells and KLR family receptors may play an important clinical role in immune surveillance of LGG.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yaseelan Palarasah
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Yabe R, Chung SH, Murayama MA, Kubo S, Shimizu K, Akahori Y, Maruhashi T, Seno A, Kaifu T, Saijo S, Iwakura Y. TARM1 contributes to development of arthritis by activating dendritic cells through recognition of collagens. Nat Commun 2021; 12:94. [PMID: 33397982 PMCID: PMC7782728 DOI: 10.1038/s41467-020-20307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
TARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1-/- mice. T cell priming against type 2 collagen is suppressed in Tarm1-/- mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1-/- mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rikio Yabe
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Masanori A Murayama
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Sachiko Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kenji Shimizu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Yukiko Akahori
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan
| | - Takumi Maruhashi
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Akimasa Seno
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Tomonori Kaifu
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shinobu Saijo
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
- Medical Mycobiology Research Center, Chiba University, Chiba, Chiba, 260-8673, Japan.
| |
Collapse
|
11
|
Yui K, Inoue SI. Host-pathogen interaction in the tissue environment during Plasmodium blood-stage infection. Parasite Immunol 2020; 43:e12763. [PMID: 32497249 DOI: 10.1111/pim.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Human malarial infection occurs after an infectious Anopheles mosquito bites. Following the initial liver-stage infection, parasites transform into merozoites, infecting red blood cells (RBCs). Repeated RBC infection then occurs during the blood-stage infection, while patients experience various malarial symptoms. Protective immune responses are elicited by this systemic infection, but excessive responses are sometimes harmful for hosts. As parasites infect only RBCs and their immediate precursors during this stage, direct parasite-host interactions occur primarily in the environment surrounded by endothelial lining of blood vessels. The spleen is the major organ where the immune system encounters infected RBCs, causing immunological responses. Its tissue structure is markedly altered during malarial infection in mice and humans. Plasmodium falciparum parasites inside RBCs express proteins, such as PfEMP-1 and RIFIN, transported to the RBC surfaces in order to evade immunological attack by sequestering themselves in the peripheral vasculature avoiding spleen or by direct immune cell inhibition through inhibitory receptors. Host cell production of regulatory cytokines IL-10 and IL-27 limits excessive immune responses, avoiding tissue damage. The regulation of the protective and inhibitory immune responses through host-parasite interactions allows chronic Plasmodium infection. In this review, we discuss underlying interaction mechanisms relevant for developing effective strategies against malaria.
Collapse
Affiliation(s)
- Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
12
|
The Education of NK Cells Determines Their Responsiveness to Autologous HIV-Infected CD4 T Cells. J Virol 2019; 93:JVI.01185-19. [PMID: 31511383 DOI: 10.1128/jvi.01185-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
Several studies support a role for specific killer immunoglobulin-like receptor (KIR)-HLA combinations in protection from HIV infection and slower progression to AIDS. Natural killer (NK) cells acquire effector functions through education, a process that requires the interaction of inhibitory NK cell receptors with their major histocompatibility complex (MHC) class I (or HLA class I [HLA-I]) ligands. HLA-C allotypes are ligands for the inhibitory KIRs (iKIRs) KIR2DL1, KIR2DL2, and KIR2DL3, whereas the ligand for KIR3DL1 is HLA-Bw4. HIV infection reduces the expression of HLA-A, -B, and -C on the surfaces of infected CD4 (iCD4) T cells. Here we investigated whether education through iKIR-HLA interactions influenced NK cell responses to autologous iCD4 cells. Enriched NK cells were stimulated with autologous iCD4 cells or with uninfected CD4 cells as controls. The capacities of single-positive (sp) KIR2DL1, KIR2DL2, KIR2DL3, and KIR3DL1 NK cells to produce CCL4, gamma interferon (IFN-γ), and/or CD107a were assessed by flow cytometry. Overall, we observed that the potency of NK cell education was directly related to the frequency of each spiKIR+ NK cell's ability to respond to the reduction of its cognate HLA ligand on autologous iCD4 cells, as measured by the frequency of production by spiKIR+ NK cells of CCL4, IFN-γ, and/or CD107a. Both NK cell education and HIV-mediated changes in HLA expression influenced NK cell responses to iCD4 cells.IMPORTANCE Epidemiological studies show that natural killer (NK) cells have anti-HIV activity: they are able to reduce the risk of HIV infection and/or slow HIV disease progression. How NK cells contribute to these outcomes is not fully characterized. We used primary NK cells and autologous HIV-infected cells to examine the role of education through four inhibitory killer immunoglobulin-like receptors (iKIRs) from persons with HLA types that are able to educate NK cells bearing one of these iKIRs. HIV-infected cells activated NK cells through missing-self mechanisms due to the downmodulation of cell surface HLA expression mediated by HIV Nef and Vpu. A higher frequency of educated than uneducated NK cells expressing each of these iKIRs responded to autologous HIV-infected cells by producing CCL4, IFN-γ, and CD107a. Since NK cells were from non-HIV-infected individuals, they model the consequences of healthy NK cell-HIV-infected cell interactions occurring in the HIV eclipse phase, when new infections are susceptible to extinction.
Collapse
|
13
|
LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol 2019; 17:272-282. [PMID: 31700117 DOI: 10.1038/s41423-019-0321-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
We recently demonstrated that leukocyte Ig-like receptor 4 (LILRB4) expressed by monocytic acute myeloid leukemia (AML) cells mediates T-cell inhibition and leukemia cell infiltration via its intracellular domain. The cytoplasmic domain of LILRB4 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs); the tyrosines at positions 360, 412, and 442 are phosphorylation sites. Here, we analyzed how the ITIMs of LILRB4 in AML cells mediate its function. Our in vitro and in vivo data show that Y412 and Y442, but not Y360, of LILRB4 are required for T-cell inhibition, and all three ITIMs are needed for leukemia cell infiltration. We constructed chimeric proteins containing the extracellular domain of LILRB4 and the intracellular domain of LILRB1 and vice versa. The intracellular domain of LILRB4, but not that of LILRB1, mediates T-cell suppression and AML cell migration. Our studies thus defined the unique signaling roles of LILRB4 ITIMs in AML cells.
Collapse
|
14
|
Guselnikov SV, Taranin AV. Unraveling the LRC Evolution in Mammals: IGSF1 and A1BG Provide the Keys. Genome Biol Evol 2019; 11:1586-1601. [PMID: 31106814 PMCID: PMC6557307 DOI: 10.1093/gbe/evz102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Receptors of the leukocyte receptor cluster (LRC) play a range of important functions in the human immune system. However, the evolution of the LRC remains poorly understood, even in m\ammals not to mention nonmammalian vertebrates. We conducted a comprehensive bioinformatics analysis of the LRC-related genes in the publicly available genomes of six species that represent eutherian, marsupial, and monotreme lineages of mammals. As a result, the LRCs of African elephant and armadillo were characterized, two new genes, IGSF1 and A1BG, were attributed to the LRC of eutherian mammals, the LRC gene content was substantially extended in the short-tailed opossum and Tasmanian devil and, finally, four LRC genes were identified in the platypus genome. These findings have for the first time provided a solid basis for inference of the LRC phylogeny across mammals. Our analysis suggests that the mammalian LRC family likely derived from two ancestral genes, which evolved in a lineage-specific manner by expansion/contraction, extensive exon shuffling, and sequence divergence. The striking structural and functional diversity of eutherian LRC molecules appears largely lineage specific. The only family member retained in all the three mammalian lineages is a collagen-binding receptor OSCAR. Strong sequence conservation of a transmembrane domain known to associate with FcRγ suggests an adaptive role of this domain subtype in the LRC evolution.
Collapse
Affiliation(s)
- Sergey V Guselnikov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| | - Alexander V Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| |
Collapse
|
15
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, He L, Chen Y, Chen H, Luo W, Lu Z, Xie J, Churchill H, Xu Y, Zhou Z, Wu G, Yu C, John S, Hirayasu K, Nguyen N, Liu X, Huang F, Li L, Deng H, Tang H, Sadek AH, Zhang L, Huang T, Zou Y, Chen B, Zhu H, Arase H, Xia N, Jiang Y, Collins R, You MJ, Homsi J, Unni N, Lewis C, Chen GQ, Fu YX, Liao XC, An Z, Zheng J, Zhang N, Zhang CC. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 2018; 562:605-609. [PMID: 30333625 PMCID: PMC6296374 DOI: 10.1038/s41586-018-0615-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Immune checkpoint blockade therapy has been successful in treating some types of cancer but has not shown clinical benefits for treating leukaemia1. This result suggests that leukaemia uses unique mechanisms to evade this therapy. Certain immune inhibitory receptors that are expressed by normal immune cells are also present on leukaemia cells. Whether these receptors can initiate immune-related primary signalling in tumour cells remains unknown. Here we use mouse models and human cells to show that LILRB4, an immunoreceptor tyrosine-based inhibition motif-containing receptor and a marker of monocytic leukaemia, supports tumour cell infiltration into tissues and suppresses T cell activity via a signalling pathway that involves APOE, LILRB4, SHP-2, uPAR and ARG1 in acute myeloid leukaemia (AML) cells. Deletion of LILRB4 or the use of antibodies to block LILRB4 signalling impeded AML development. Thus, LILRB4 orchestrates tumour invasion pathways in monocytic leukaemia cells by creating an immunosuppressive microenvironment. LILRB4 represents a compelling target for the treatment of monocytic AML.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/metabolism
- Arginase/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Movement
- Cell Proliferation
- Female
- Humans
- Immune Tolerance/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Membrane Glycoproteins
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic
- Receptors, Urokinase Plasminogen Activator/metabolism
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Xie
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zunling Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Taishan Immunology Program, Basic Medicine School, Binzhou Medical University, Yantai, China
| | - Licai He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yuanzhi Chen
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- School of Public Health, Xiamen University, Xiamen, China
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiguang Luo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, Xiangya Medical School, Central South University, Changsha, China
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute of Biomedical Sciences and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Taishan Immunology Program, Basic Medicine School, Binzhou Medical University, Yantai, China
| | - Hywyn Churchill
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Zhan Zhou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenyi Yu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Xiangya Medical School, Central South University, Changsha, China
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kouyuki Hirayasu
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nam Nguyen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangfang Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Hematology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Haidong Tang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ali H Sadek
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lingbo Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Xiangya Medical School, Central South University, Changsha, China
| | - Tao Huang
- Immune-Onc Therapeutics, Inc., Palo Alto, CA, USA
| | - Yizhou Zou
- Department of Immunology, Xiangya Medical School, Central South University, Changsha, China
| | - Benjamin Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hong Zhu
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningshao Xia
- School of Public Health, Xiamen University, Xiamen, China
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jade Homsi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nisha Unni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Kiani Z, Dupuy FP, Bruneau J, Lebouché B, Zhang CX, Jackson E, Lisovsky I, da Fonseca S, Geraghty DE, Bernard NF. HLA-F on HLA-Null 721.221 Cells Activates Primary NK Cells Expressing the Activating Killer Ig-like Receptor KIR3DS1. THE JOURNAL OF IMMUNOLOGY 2018; 201:113-123. [PMID: 29743316 DOI: 10.4049/jimmunol.1701370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
NK cells elicit important responses against transformed and virally infected cells. Carriage of the gene encoding the activating killer Ig-like receptor KIR3DS1 is associated with slower time to AIDS and protection from HIV infection. Recently, open conformers of the nonclassical MHC class Ib Ag HLA-F were identified as KIR3DS1 ligands. In this study, we investigated whether the interaction of KIR3DS1 on primary NK cells with HLA-F on the HLA-null cell line 721.221 (221) stimulated KIR3DS1+ NK cells. We used a panel of Abs to detect KIR3DS1+CD56dim NK cells that coexpressed the inhibitory NK cell receptors KIR2DL1/L2/L3, 3DL2, NKG2A, and ILT2; the activating NK cell receptors KIR2DS1/S2/S3/S5; and CCL4, IFN-γ, and CD107a functions. We showed that both untreated and acid-pulsed 221 cells induced a similar frequency of KIR3DS1+ cells to secrete CCL4/IFN-γ and express CD107a with a similar intensity. A higher percentage of KIR3DS1+ than KIR3DS1- NK cells responded to 221 cells when either inclusive or exclusive (i.e., coexpressing none of the other inhibitory NK cell receptors and activating NK cell receptors detected by the Ab panel) gating strategies were employed to identify these NK cell populations. Blocking the interaction of HLA-F on 221 cells with KIR3DS1-Fc chimeric protein or anti-HLA-F Abs on exclusively gated KIR3DS1+ cells reduced the frequency of functional cells compared with that of unblocked conditions for stimulated KIR3DS1+ NK cells. Thus, ligation of KIR3DS1 activates primary NK cells for several antiviral functions.
Collapse
Affiliation(s)
- Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada.,Department of Family Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Bertrand Lebouché
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Family Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Cindy X Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Elise Jackson
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Irene Lisovsky
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Sandrina da Fonseca
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Daniel E Geraghty
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
18
|
Saito F, Hirayasu K, Satoh T, Wang CW, Lusingu J, Arimori T, Shida K, Palacpac NMQ, Itagaki S, Iwanaga S, Takashima E, Tsuboi T, Kohyama M, Suenaga T, Colonna M, Takagi J, Lavstsen T, Horii T, Arase H. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature 2017; 552:101-105. [PMID: 29186116 PMCID: PMC5748893 DOI: 10.1038/nature24994] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022]
Abstract
Malaria is among the most serious infectious diseases affecting humans, accounting for approximately half a million deaths annually1. Plasmodium falciparum is the causative agent of most life-threatening malaria cases. Acquired immunity to malaria is inefficient, even after repeated exposures to P. falciparum2; immune regulatory mechanisms employed by P. falciparum remain largely unclear. Here, we show that P. falciparum uses immune inhibitory receptors for immune evasion. RIFINs, products of a polymorphic multigene family comprising approximately 150–200 genes per parasite genome3, are expressed on the surface of infected erythrocytes. We found that a subset of RIFINs binds to either leucocyte immunoglobulin-like receptor B1 (LILRB1) or leucocyte-associated immunoglobulin-like receptor 1 (LAIR1). LILRB1-binding RIFINs inhibited activation of LILRB1-expressing B cells and NK cells. Furthermore, interactions between LILRB1 and P. falciparum-infected erythrocytes isolated from malaria patients were associated with severe malaria, although an extended study with larger sample sizes is required to confirm the findings. These results suggest that P. falciparum has acquired multiple RIFINs to evade the host immune system by targeting immune inhibitory receptors.
Collapse
Affiliation(s)
- Fumiji Saito
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kouyuki Hirayasu
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Satoh
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - John Lusingu
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Shida
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nirianne Marie Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sawako Itagaki
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shiroh Iwanaga
- Department of Medical Zoology, School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.,Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Centre, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Centre, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Masako Kohyama
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Centre, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Jackson E, Zhang CX, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, Gilbert L, Bruneau J, Thomas R, Côté P, Trottier B, LeBlanc R, Rouleau D, Tremblay C, Tsoukas CM, Routy JP, Ni X, Mabanga T, Bernard NF. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS One 2017; 12:e0185160. [PMID: 28938026 PMCID: PMC5609756 DOI: 10.1371/journal.pone.0185160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Previously, we showed that Killer Immunoglobulin-like Receptor (KIR)3DS1 homozygotes (hmz) are more frequent in HIV exposed seronegative (HESN) than in recently HIV infected (HIV+) individuals. KIR3DS1 encodes an activating Natural Killer (NK) cell receptor (NKR). The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells
Collapse
Affiliation(s)
- Elise Jackson
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Cindy Xinyu Zhang
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Irene Lisovsky
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Benjamin Tallon
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Alexa Del Corpo
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
| | - Louise Gilbert
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montreal, Quebec, Canada
- Department of Family Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Réjean Thomas
- Clinique Médicale l’Actuel, Montréal, Québec, Canada
- Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Pierre Côté
- Clinique Médicale du Quartier Latin, Montreal, Quebec, Canada
| | - Benoit Trottier
- Clinique Médicale du Quartier Latin, Montreal, Quebec, Canada
| | | | - Danielle Rouleau
- Département de Microbiologie, Infectiologie et Immunologie, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Montreal, Quebec, Canada
| | - Christos M. Tsoukas
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Quebec, Canada
- Division of Clinical Immunology, MUHC, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Quebec, Canada
- Division of Hematology, MUHC, Montreal, Quebec, Canada
| | - Xiaoyan Ni
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
| | - Tsoarello Mabanga
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Quebec, Canada
- Division of Clinical Immunology, MUHC, Montreal, Quebec, Canada
- * E-mail:
| | | |
Collapse
|
20
|
Barrow AD, Colonna M. Tailoring Natural Killer cell immunotherapy to the tumour microenvironment. Semin Immunol 2017; 31:30-36. [PMID: 28935344 DOI: 10.1016/j.smim.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are cytotoxic and cytokine-secreting cells that can mediate potent anti-tumour activity. Accumulating evidence indicates that NK cell functions are severely compromised within the confines of the tumour microenvironment thus impairing the efficacy and development of NK cell-based therapies. Here we review the various cellular and molecular pathways that tumours have supplanted to evade NK cell surveillance. We highlight novel strategies designed to alleviate or circumvent the immunosuppressive conditions of the tumour microenvironment in order to emancipate NK cell function and stifle the inexorable growth and metastasis of malignant cells.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
22
|
Jansen CA, van Haarlem DA, Sperling B, van Kooten PJ, de Vries E, Viertlboeck BC, Vervelde L, Göbel TW. Identification of an Activating Chicken Ig-like Receptor Recognizing Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2016; 197:4696-4703. [PMID: 27821665 DOI: 10.4049/jimmunol.1600401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/12/2016] [Indexed: 01/15/2023]
Abstract
Chicken Ig-like receptors (CHIRs) represent a multigene family encoded by the leukocyte receptor complex that encodes a variety of receptors that are subdivided into activating CHIR-A, inhibitory CHIR-B, and bifunctional CHIR-AB. Apart from CHIR-AB, which functions as an Fc receptor, CHIR ligands are unknown. In the current study, we used a panel of different BWZ.36 CHIR reporter cells to identify an interaction between specific CHIRs and avian influenza virus (AIV). The specificity of the CHIR-AIV interaction was further demonstrated using CHIR fusion proteins that bound to AIV-coated plates and were able to reduce the interaction of reporter cells with AIV. There was no difference in binding of CHIR to different AIV strains. Furthermore, CHIR fusion proteins reduced AIV-induced in vitro activation of NK cells obtained from lungs of AIV-infected animals, as judged by the lower frequency of CD107+ cells. Because the original CHIR reporter lines were generated based on sequence information about extracellular CHIR domains, we next identified a full-length CHIR that displayed similar binding to AIV. The sequence analysis identified this CHIR as a CHIR-A. Neuraminidase treatment of coated CHIR-human Ig proteins reduced binding of trimeric H5 proteins to CHIR. This suggests that the interaction is dependent on sialic acid moieties on the receptor. In conclusion, this article identifies AIV as a ligand of CHIR-A and describes the functional consequences of this interaction.
Collapse
Affiliation(s)
- Christine A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Daphne A van Haarlem
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Beatrice Sperling
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany
| | - Peter J van Kooten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Erik de Vries
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Birgit C Viertlboeck
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany
| | - Lonneke Vervelde
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; and
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, 80539 Munich, Germany
| |
Collapse
|
23
|
Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15:25-40. [PMID: 26636629 PMCID: PMC4825776 DOI: 10.1080/15384101.2015.1121324] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology - as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.
Collapse
Affiliation(s)
- Xunlei Kang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Jaehyup Kim
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Mi Deng
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Samuel John
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Heyu Chen
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Guojin Wu
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hiep Phan
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Cheng Cheng Zhang
- a Department of Physiology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
24
|
Jiang W, Johnson C, Simecek N, López-Álvarez MR, Di D, Trowsdale J, Traherne JA. qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination. Genome Med 2016; 8:99. [PMID: 27686127 PMCID: PMC5041586 DOI: 10.1186/s13073-016-0358-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs), expressed on natural killer cells and T cells, have considerable biomedical relevance playing significant roles in immunity, pregnancy and transplantation. The KIR locus is one of the most complex and polymorphic regions of the human genome. Extensive sequence homology and copy number variation makes KIRs technically laborious and expensive to type. To aid the investigation of KIRs in human disease we developed a high-throughput, multiplex real-time polymerase chain reaction method to determine gene copy number for each KIR locus. We used reference DNA samples to validate the accuracy and a cohort of 1698 individuals to evaluate capability for precise copy number discrimination. The method provides improved information and identifies KIR haplotype alterations that were not previously visible using other approaches.
Collapse
Affiliation(s)
- W Jiang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - N Simecek
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - M R López-Álvarez
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - D Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - J Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - J A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
25
|
Favier B. Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunol Rev 2016; 273:140-55. [DOI: 10.1111/imr.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit Favier
- CEA, DRF, IMETI, IMVA, UMR 1184, INSERM; Université Paris-Sud; IDMIT Infrastructure; Fontenay-aux-Roses France
| |
Collapse
|
26
|
Trowsdale J. Host response: Sensing microbial sabotage. Nat Microbiol 2016; 1:16071. [PMID: 27572843 DOI: 10.1038/nmicrobiol.2016.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John Trowsdale
- Pathology Department, Tennis Court Road, University of Cambridge, Cambridge CB21QP, UK
| |
Collapse
|
27
|
|