1
|
Kooreman LFS, Dieleman S, van Kuijk SMJ, zur Hausen A, Smidt ML, Grabsch HI. The prognostic value of the histological shape of tumor negative sentinel nodes in breast cancer. Front Immunol 2023; 14:1258641. [PMID: 37965336 PMCID: PMC10642264 DOI: 10.3389/fimmu.2023.1258641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Sentinel lymph node (SLN) metastasis is an important predictor of prognosis in breast cancer (BC) patients, guiding treatment decisions. However, patients with the same BC subtype and tumor negative SLN (SLNneg) can have different survival outcomes. We hypothesized that the host anti-tumor immune reaction in SLNneg is important and results in morphometrically measurable changes in SLN size or shape which are related to patient prognosis. Methods Surface area, circumference, long axis and short axis were histologically measured in 694 SLNneg from 356 cases of invasive BC and 67 ductal carcinoma in situ cases. The area occupied by fat was categorized as less or more than 50%. The long to short axis (L/S) ratio was calculated. The relationship between SLNneg morphometries and clinicopathological variables like tumor-infiltrating lymphocytes (TILs) within the primary tumor, as well as prognosis at 10 years follow up were analyzed. Results The mean SLNneg surface area was 78.7mm2, circumference 40.3mm, long axis 13.1mm, short axis 8.2mm and L/S ratio 1.7. Larger surface area, long axis and short axis, including age >55 years were associated with higher body mass index (BMI) and SLN fat over 50% (p<0.003). In invasive BC, a high SLNneg L/S ratio (≥1.9) was related to poorer disease-free (HR=1.805, 95%CI 1.182-2.755, p=0.006) and overall (HR=2.389, 95%CI 1.481-3.851, p<0.001) survival. A low SLNneg L/S ratio (<1.9) was associated with high TILs in the primary BC (≥10%) (p=0.005). However a high TIL count was not of prognostic relevance. Conclusions This is the first study to suggest that morphometric characteristics of axillary SLNneg, like L/S ratio, could be used to predict prognosis in patients with SLNneg invasive BC of all subtypes. The association between low L/S ratio and high TILs suggest that SLN shape is related to immunological functioning of the SLN and could be used in addition to TIL evaluation. Regarding the dubious role of TILs in hormone receptor positive breast cancer, SLNneg morphometry to gain information about host immune status could especially be of benefit in this subtype. Further studies are warranted to better understand the underlying biological mechanisms.
Collapse
Affiliation(s)
- Loes F. S. Kooreman
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Sabine Dieleman
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Sander M. J. van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Axel zur Hausen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Marjolein L. Smidt
- GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Heike I. Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Pathology and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Daniel L, Counoupas C, Bhattacharyya ND, Triccas JA, Britton WJ, Feng CG. L-selectin-dependent and -independent homing of naïve lymphocytes through the lung draining lymph node support T cell response to pulmonary Mycobacterium tuberculosis infection. PLoS Pathog 2023; 19:e1011460. [PMID: 37405965 DOI: 10.1371/journal.ppat.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Recruiting large numbers of naïve lymphocytes to lymph nodes is critical for mounting an effective adaptive immune response. While most naïve lymphocytes utilize homing molecule L-selectin to enter lymph nodes, some circulating cells can traffic to the lung-draining mediastinal lymph node (mLN) through lymphatics via the intermediate organ, lung. However, whether this alternative trafficking mechanism operates in infection and contributes to T cell priming are unknown. We report that in pulmonary Mycobacterium tuberculosis-infected mice, homing of circulating lymphocytes to the mLN is significantly less efficient than to non-draining lymph node. CD62L blockade only partially reduced the homing of naïve T lymphocytes, consistent with L-selectin-independent routing of naïve lymphocytes to the site. We further demonstrated that lymphatic vessels in infected mLN expanded significantly and inhibiting lymphangiogenesis with a vascular endothelial growth factor receptor 3 kinase inhibitor reduced the recruitment of intravenously injected naïve lymphocytes to the mLN. Finally, mycobacterium-specific T cells entering via the L-selectin-independent route were readily activated in the mLN. Our study suggests that both L-selectin-dependent and -independent pathways contribute to naïve lymphocyte entry into mLN during M. tuberculosis infection and the latter pathway may represent an important mechanism for orchestrating host defence in the lungs.
Collapse
Affiliation(s)
- Lina Daniel
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Counoupas
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Nayan D Bhattacharyya
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - James A Triccas
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia
| | - Carl G Feng
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Lenti E, Genovese L, Bianchessi S, Maurizio A, Sain SB, di Lillo A, Mattavelli G, Harel I, Bernassola F, Hehlgans T, Pfeffer K, Crosti M, Abrignani S, Evans SM, Sitia G, Guimarães-Camboa N, Russo V, van de Pavert SA, Garcia-Manteiga JM, Brendolan A. Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity 2022; 55:606-622.e6. [PMID: 35358427 DOI: 10.1016/j.immuni.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.
Collapse
Affiliation(s)
- Elisa Lenti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Genovese
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bianchessi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Baghai Sain
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia di Lillo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Greta Mattavelli
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Itamar Harel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Thomas Hehlgans
- Leibniz Institute of Immunotherapy (LIT), Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Klaus Pfeffer
- Institute of Medical, Microbiology and Hospital Hygiene, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariacristina Crosti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy; Department of Clinical Science and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093, USA
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nuno Guimarães-Camboa
- Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt 60590, Germany; German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Germany
| | - Vincenzo Russo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Lobov GI. Role of Endogenous Hydrogen Sulfide in Relaxation of the Lymph Node Capsule in LPS-induced Inflammation. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kuka M, Iannacone M. Heterogeneity in antiviral B cell responses: Lessons from the movies. Immunol Rev 2021; 306:224-233. [PMID: 34811768 DOI: 10.1111/imr.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Humoral and cellular responses to viral infections coexist in a dynamic equilibrium that often results in efficient viral clearance. However, in some infections one of the two responses prevails, for instance when an overactivation of cytotoxic T cells is accompanied by weak and insufficient antibody responses. Although the cellular response is usually sufficient to control a primary viral infection, in some cases clearance is not complete and persistent infections ensue. In order to design effective therapeutic or vaccination strategies aiming at inducing early and potent neutralizing antibody responses, a deep knowledge of the cellular and molecular determinants of antiviral immune responses is needed. Here, we review our understanding on the spatiotemporal dynamics of antiviral humoral immune responses, with a particular focus on recent studies using intravital imaging approaches as an insightful complement to more traditional techniques.
Collapse
Affiliation(s)
- Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Zhu M. Immunological perspectives on spatial and temporal vaccine delivery. Adv Drug Deliv Rev 2021; 178:113966. [PMID: 34506868 DOI: 10.1016/j.addr.2021.113966] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 12/19/2022]
Abstract
The so-called rational design of vaccines has been a very attractive concept and also an important direction for vaccine research and development. However, the underlying rationales, especially on the immunological aspect, remain less systemically and deeply understood. Given the critical role of lymph nodes (LNs) in the induction of B and T cell responses upon vaccination, LN targeting has been a popular strategy in vaccine design. The LN is a highly organized structure; induction of adaptive immune response is highly orchestrated by various types of LN stromal cells and hematopoietic immune cells both spatially and temporally. Thus, not only LN targeting, but also cellular targeting and even subcellular compartment targeting should be considered for specifically enhanced vaccine efficacy. Moreover, temporal control of vaccine antigen and adjuvant delivery may also optimize the immune response.
Collapse
|
7
|
Moysi E, Del Rio Estrada PM, Torres-Ruiz F, Reyes-Terán G, Koup RA, Petrovas C. In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization. Front Immunol 2021; 12:683396. [PMID: 34177929 PMCID: PMC8221112 DOI: 10.3389/fimmu.2021.683396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Mexico City, Mexico
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
8
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
9
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
10
|
Liu MJ, Guo H, Jiang LL, Jiao M, Wang SH, Tian T, Fu X, Wang WJ. Elevated RBP-Jκ and CXCL11 Expression in Colon Cancer is Associated with an Unfavorable Clinical Outcome. Cancer Manag Res 2021; 13:3651-3661. [PMID: 33981164 PMCID: PMC8107007 DOI: 10.2147/cmar.s298580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction This study aims at exploring the expression and significance of recombination signal-binding protein for immunoglobulin kappa J region (RBP-Jκ) and C-X-C motif chemokine 11 (CXCL11) in human colon cancer tissues. Methods The RBP-Jκ and CXCL11 expression levels were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) in patients with colon cancer, and their prognostic significance was evaluated. Results Through analyzing 342 samples of colon cancer patients treated at our institution, increased expression of RBP-Jκ and CXCL11 was found in human colon cancer specimens compared with matched paratumorous normal specimens (P<0.001). A positive correlation was found between RBP-Jκ expression and CXCL11 expression (P<0.001). High RBP-Jκ expression was significantly associated with poorly differentiated tumors (P=0.005), invasion beyond propria muscularis (P=0.025), lymph node metastases (P=0.005), distant metastasis (P<0.001), advanced tumor-node-metastasis (TNM) stage (P=0.004), and a shorter overall survival (P<0.001). An increase in CXCL11 protein expression was associated with poorly differentiated tumors (P=0.015), invasion beyond propria muscularis (P=0.029), lymph node metastases (P=0.031), distant metastasis (P=0.045), advanced TNM stage (P=0.026), and a shorter overall survival of patients (P<0.001). In multivariate Cox regression analysis, RBP-Jκ protein expression (P=0.036), CXCL11 protein expression (P=0.001), differentiation (P<0.001), depth of invasion (P=0.009), distant metastasis (P<0.001), and TNM stage (P<0.001) were independent prognostic indicators of colon cancer. Conclusion High expression of RBP-Jκ is closely associated with high CXCL11 expression, which represents a risk factor for the poor overall survival of colon cancer patients.
Collapse
Affiliation(s)
- Meng-Jie Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li-Li Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Min Jiao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shu-Hong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wen-Juan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
11
|
Li YL, Chen CH, Chen JY, Lai YS, Wang SC, Jiang SS, Hung WC. Single-cell analysis reveals immune modulation and metabolic switch in tumor-draining lymph nodes. Oncoimmunology 2020; 9:1830513. [PMID: 33117603 PMCID: PMC7575008 DOI: 10.1080/2162402x.2020.1830513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymph-node metastasis is a prognosis factor for poor clinical outcome of breast cancer patients. Currently, how breast cancer cells establish pre-metastatic niche in the tumor-draining lymph nodes (TDLNs) is still unclear. To address this question, we isolated heterogeneous cells including immune and stromal cells from naive lymph nodes (LNs) of the FVB/NJ mice and TDLNs of the MMTV-PyMT mice. Single-cell RNA sequencing was performed to investigate the transcriptome of the cells and various bioinformatics analyses were used to identify the altered pathways. Our results revealed several significant changes between naïve LNs and TDLNs. First, according to immunologic signature and pathway analysis, CD4+ and CD8 + T cells showed upregulated angiogenesis pathway genes and higher regulatory T (Treg)-associated genes while they demonstrated downregulation of interferon response and inflammatory response gene signatures, concurrently suggesting an immunosuppressive microenvironment in the TDLNs. Second, profiling of B cells showed down-regulation of marginal zone B lymphocytes in the TDLNs, which was validated by flow cytometric analysis. Third, we found the enhancement of oxidative phosphorylation pathway in the fibroblastic reticular cells (FRCs) of the MMTV-PyMT mice and the elevation of related genes including Prdx3, Ndufa4 and Uqcrb, suggesting massive ATP consumption and TCA cycle metabolism in the FRCs. Collectively, our results reveal the reprogramming of TDLNs during breast cancer progression at single-cell level in a spontaneous breast cancer model and suggest the changes in immune modulation and metabolic switch are key alterations in the preparation of pre-metastatic niche by breast cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, and the Graduate Program of Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Shipman WD, Sandoval MJ, Veiga K, Donlin LT, Lu TT. Fibroblast subtypes in tissues affected by autoimmunity: with lessons from lymph node fibroblasts. Curr Opin Immunol 2020; 64:63-70. [PMID: 32387902 DOI: 10.1016/j.coi.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advent of single-cell technologies has fast-tracked the discovery of multiple fibroblast subsets in tissues affected by autoimmune disease. In recent years, interest in lymph node fibroblasts that support and regulate immune cells has also grown, leading to an expanding framework of stromal cell subsets with distinct spatial, transcriptional, and functional characteristics. Inflammation can drive tissue fibroblasts to adopt a lymphoid tissue stromal cell phenotype, suggesting that fibroblasts in diseased tissues can have counterparts in lymphoid tissues. Here, we examine fibroblast subsets in tissues affected by autoimmunity in the context of knowledge gained from studies on lymph node fibroblasts, with the ultimate aim to better understand stromal cell heterogeneity in these immunologically reactive tissues.
Collapse
Affiliation(s)
- William D Shipman
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Marvin J Sandoval
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Keila Veiga
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|