1
|
Wang R, Peng X, Yuan Y, Shi B, Liu Y, Ni H, Guo W, Yang Q, Liu P, Wang J, Su Z, Yu S, Liu D, Zhang J, Xia J, Liu X, Li H, Yang Z, Peng Z. Dynamic immune recovery process after liver transplantation revealed by single-cell multi-omics analysis. Innovation (N Y) 2024; 5:100599. [PMID: 38510071 PMCID: PMC10952083 DOI: 10.1016/j.xinn.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Elucidating the temporal process of immune remodeling under immunosuppressive treatment after liver transplantation (LT) is critical for precise clinical management strategies. Here, we performed a single-cell multi-omics analysis of peripheral blood mononuclear cells (PBMCs) collected from LT patients (with and without acute cellular rejection [ACR]) at 13 time points. Validation was performed in two independent cohorts with additional LT patients and healthy controls. Our study revealed a four-phase recovery process after LT and delineated changes in immune cell composition, expression programs, and interactions along this process. The intensity of the immune response differs between the ACR and non-ACR patients. Notably, the newly identified inflamed NK cells, CD14+RNASE2+ monocytes, and FOS-expressing monocytes emerged as predictive indicators of ACR. This study illuminates the longitudinal evolution of the immune cell landscape under tacrolimus-based immunosuppressive treatment during LT recovery, providing a four-phase framework that aids the clinical management of LT patients.
Collapse
Affiliation(s)
- Rui Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yixin Yuan
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Baojie Shi
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiwei Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Pingguo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jie Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhaojie Su
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shengnan Yu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Dehua Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junjie Xia
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao Li
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhengfeng Yang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhihai Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Aghbash PS, Rasizadeh R, Arefi V, Nahand JS, Baghi HB. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 2023; 205:280. [PMID: 37430000 DOI: 10.1007/s00203-023-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Arefi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
3
|
Luo Z, Liao T, Zhang Y, Zheng H, Sun Q, Han F, Ma M, Ye Y, Sun Q. Ex vivo anchored PD-L1 functionally prevent in vivo renal allograft rejection. Bioeng Transl Med 2022; 7:e10316. [PMID: 36176616 PMCID: PMC9472007 DOI: 10.1002/btm2.10316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Organ transplantation is the optimal treatment for patients with end-stage diseases. T cell activation is a major contributing factor toward the trigger of rejection. Induction therapy with T cell depleting agent is a common option but increases the risk of severe systemic infections. The ideal therapy should precisely target the allograft. Here, we developed a membrane-anchored-protein PD-L1 (map-PD-L1), which effectively anchored onto the surface of rat glomerular endothelial cells (rgEC). The expression of PD-L1 increased directly with map-PD-L1 concentration and incubation time. Moreover, map-PD-L1 was even stably anchored to rgEC at low temperature. Map-PD-L1 could bind to PD-1 and significantly promote T cell apoptosis and inhibited T cell activation. Using kidney transplantation models, we found that ex vivo perfusion of donor kidneys with map-PD-L1 significantly protected grafts against acute injury without using any immunosuppressant. We found map-PD-L1 could reduce T cell graft infiltration and increase intragraft Treg infiltration, suggesting a long-term effect in allograft protection. More importantly, modifying donor organs in vitro was not only safe, but also significantly reduced the side effects of systemic application. Our results suggested that ex vivo perfusion of donor organ with map-PD-L1 might provide a viable clinical option for organ-targeted induction therapy in organ transplantation.
Collapse
Affiliation(s)
- Zihuan Luo
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tao Liao
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yannan Zhang
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haofeng Zheng
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qipeng Sun
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fei Han
- Organ Transplantation Research InstituteThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Maolin Ma
- Organ Transplantation Research InstituteThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yongrong Ye
- Organ Transplantation Research InstituteThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qiquan Sun
- Department of Renal TransplantationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Luo Y, Teng F, Fu H, Ding GS. Immunotherapy in liver transplantation for hepatocellular carcinoma: Pros and cons. World J Gastrointest Oncol 2022; 14:163-180. [PMID: 35116109 PMCID: PMC8790424 DOI: 10.4251/wjgo.v14.i1.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/30/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation (LT) has emerged as a curative strategy for hepatocellular carcinoma (HCC), but contributes to a higher predisposition to HCC recurrence in the immunosuppression context, especially for tumors beyond the Milan criteria. Although immunotherapy has dramatically improved survival for immunocompetent patients and has become the standard of care for a variety of tumors, including HCC, it is mainly used outside the scope of organ transplantation owing to potentially fatal allograft rejection. Nevertheless, accumulative evidence has expanded the therapeutic paradigms of immunotherapy for HCC, from downstaging or bridging management in the pretransplant setting to the salvage or adjuvant strategy in the posttransplant setting. Generally, immunotherapy mainly includes immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and vaccine therapy. ICIs, followed by ACT, have been most investigated in LT, with some promising results. Because of the complex tumor microenvironment and immunoreactivity when immunosuppressants are combined with immunotherapy, it is difficult to reach formulations for immunosuppressant adjustment and the optimal selection of immunotherapy as well as patients. In addition, the absence of effective biomarkers for identifying rejection and tumor response is still an unresolved barrier to successful clinical immunotherapy applications for LT. In this review, we comprehensively summarize the available evidence of immunotherapy used in LT that is specific to HCC. Moreover, we discuss clinically concerning issues regarding the concurrent goals of graft protection and antitumor response.
Collapse
Affiliation(s)
- Yi Luo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Guo-Shan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
5
|
Chen H, Yang A, Wu C, Lin J, Wang X, Peng M, Li D, Zhang T, Zhao Q, He X. Identification of a detection panel for post-transplant virus infection through integrated analysis of non-coding RNAs in peripheral blood. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:691-698. [PMID: 34882040 DOI: 10.1080/21691401.2021.2011304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viral infection seriously affects the survival and life quality of transplanted patients without an accurate diagnosis during the early stage. Herein, we aimed to develop a novel diagnostic method based on non-coding RNAs expression in peripheral blood. An immunosuppressive mouse model of viral infection after transplantation was established. Differentially expressed non-coding RNAs were distinguished by microarray analyses in the virus-infected group. After homology analysis, 46 miRNAs and 24 lncRNAs were further verified by qRT-PCR in the peripheral blood samples of transplanted patients. Compared with normal transplanted patients, miR-29b, miR-185, and NR_073415.2 were significantly downregulated in the PBMC of post-transplant patients with viral infection. Based on the expression of the above three RNAs, principal component analysis (PCA) identified a slight overlap between the two groups. A 3-non-coding-RNA detection panel was constructed by the support vector machine analysis (SVM), whose loss rate was 14.71%. The area under the curve of it was 0.909. With the optimal cut-off value (Y = 0.328), the sensitivity was 0.929 and the specificity was 0.781. Therefore, based on non-coding RNAs expressions, a detection panel for viral infection after organ transplantation was formed with high diagnostic specificity and sensitivity.
Collapse
Affiliation(s)
- Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Anli Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Jianwei Lin
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, Shenzhen, P. R. China
| | - Xiaoping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Mengran Peng
- Dermatology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Dian Li
- Department of Data Science, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, MA, USA
| | - Tao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, P. R. China
| |
Collapse
|
6
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Buyansky D, Fallaha C, Gougeon F, Pépin MN, Cailhier JF, Beaubien-Souligny W. Acute Tubulointerstitial Nephritis in a Patient on Anti-Programmed Death-Ligand 1 Triggered by COVID-19: A Case Report. Can J Kidney Health Dis 2021; 8:20543581211014745. [PMID: 34046182 PMCID: PMC8138284 DOI: 10.1177/20543581211014745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/05/2021] [Indexed: 01/22/2023] Open
Abstract
Rationale: Immune checkpoint inhibitors are monoclonal antibodies used in the treatment of various
types of cancers. The downside of using such molecules is the potential risk of
developing immune-related adverse events. Factors that trigger these autoimmune side
effects are yet to be elucidated. Although any organ can potentially be affected, kidney
involvement is usually rare. In this case report, we describe the first known instance
of a patient being treated with an inhibitor of programmed death-ligand 1 (anti-PD-L1, a
checkpoint inhibitor) who develops acute tubulointerstitial nephritis after contracting
the severe acute respiratory syndrome coronavirus 2. Presenting concerns of the patient: A 62-year-old patient, on immunotherapy treatment for stage 4 squamous cell carcinoma,
presents to the emergency department with symptoms of lower respiratory tract infection.
Severe acute kidney injury is discovered with electrolyte imbalances requiring urgent
dialysis initiation. Further testing reveals that the patient has contracted the severe
acute respiratory syndrome coronavirus 2. Diagnosis: A kidney biopsy was performed and was compatible with acute tubulointerstitial
nephritis. Interventions: The patient was treated with high dose corticosteroid therapy followed by progressive
tapering. Outcomes: Rapid and sustained normalization of kidney function was achieved after completion of
the steroid course. Novel findings: We hypothesize that the viral infection along with checkpoint inhibitor use has created
a proinflammatory environment which led to a loss of self-tolerance to renal parenchyma.
Viruses may play a more important role in the pathogenesis of autoimmunity in this
patient population than was previously thought.
Collapse
Affiliation(s)
| | | | - François Gougeon
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | - Marie-Noëlle Pépin
- Division of Nephrology, Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | | | | |
Collapse
|