1
|
Wang F, You R, Zhang T, Chen Q. Recent progress on studies of airborne infectious disease transmission, air quality, and thermal comfort in the airliner cabin air environment. INDOOR AIR 2022; 32:e13032. [PMID: 35481932 PMCID: PMC9111434 DOI: 10.1111/ina.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 05/08/2023]
Abstract
Airborne transmission of infectious diseases through air travel has become a major concern, especially during the COVID-19 pandemic. The flying public and crew members have long demanded better air quality and thermal comfort in commercial airliner cabins. This paper reviewed studies related to the airliner cabin air environment that have been published in scientific journals since 2000, to understand the state-of-the-art in cabin air environment design and the efforts made to improve this environment. In this critical review, this paper discusses the challenges and opportunities in studying the cabin air environment. The literature review concluded that current environmental control systems for airliner cabins have done little to stop the airborne transmission of infectious diseases. There were no reports of significant air quality problems in cabins, although passengers and crew members have complained of some health-related issues. The air temperature in cabins needs to be better controlled, and therefore, better thermal comfort models for airliners should be developed. Low humidity is a major complaint from passengers and crew members. Gaspers are used by passengers to adjust thermal comfort, but they do not improve air quality. Various personalized and displacement ventilation systems have been developed to improve air quality and thermal comfort. Air cleaning technologies need to be further developed. Good tools are available for designing a better cabin air environment.
Collapse
Affiliation(s)
- Feng Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong SARChina
| | - Ruoyu You
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong SARChina
| | - Tengfei Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong SARChina
| |
Collapse
|
2
|
Park SY, Wooden TK, Pekas EJ, Anderson CP, Yadav SK, Slivka DR, Layec G. Effects of passive and active leg movements to interrupt sitting in mild hypercapnia on cardiovascular function in healthy adults. J Appl Physiol (1985) 2022; 132:874-887. [PMID: 35175102 PMCID: PMC8934680 DOI: 10.1152/japplphysiol.00799.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged sitting in a mild hypercapnic environment impairs peripheral vascular function. The effects of sitting interruptions using passive or active skeletal muscle contractions are still unclear. Therefore, we sought to examine the vascular effects of brief periods (2 min every half hour) of passive and active lower limb movement to interrupt prolonged sitting with mild hypercapnia in adults. Fourteen healthy adults (24 ± 2 yr) participated in three experimental visits sitting for 2.5 h in a mild hypercapnic environment (CO2 = 1,500 ppm): control (CON, no limb movement), passive lower limb movement (PASS), and active lower limb movement (ACT) during sitting. At all visits, brachial and popliteal artery flow-mediated dilation (FMD), microvascular function, plasmatic levels of nitrate/nitrite and endothelin-1, and heart rate variability were assessed before and after sitting. Brachial and popliteal artery FMDs were reduced in CON and PASS (P < 0.05) but were preserved (P > 0.05) in ACT. Microvascular function was blunted in CON (P < 0.05) but was preserved in PASS and ACT (P > 0.05). In addition, total plasma nitrate/nitrite was preserved in ACT (P > 0.05) but was reduced in CON and PASS (P < 0.05), and endothelin-1 levels were decreased in ACT (P < 0.05). Both passive and active movement induced a greater ratio between the low-frequency and high-frequency bands for heart rate variability (P < 0.05). For the first time, to our knowledge, we found that brief periods of passive leg movement can preserve microvascular function, but that an intervention that elicits larger increases in shear rate, such as low-intensity exercise, is required to fully protect both macrovascular and microvascular function and circulating vasoactive substance balance.NEW & NOTEWORTHY Passive leg movement could not preserve macrovascular endothelial function, whereas active leg movement could protect endothelial function. Attenuated microvascular function can be salvaged by passive movement and active movement. Preservation of macrovascular hemodynamics and plasma total nitrate/nitrite and endothelin-1 during prolonged sitting requires active movement. These findings dissociate the impacts induced by mechanical stress (passive movement) from the change in metabolism (active movement) on the vasculature during prolonged sitting in a mild hypercapnic environment.
Collapse
Affiliation(s)
- Song-Young Park
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - TeSean K. Wooden
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Elizabeth J. Pekas
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Cody P. Anderson
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Santosh K. Yadav
- 2Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dustin R. Slivka
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Gwenael Layec
- 3Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts,4Institute for Applied Life Sciences, Amherst, Massachusetts
| |
Collapse
|
3
|
Yin Y, He J, Pei J, Yang X, Sun Y, Cui X, Lin CH, Wei D, Chen Q. Influencing factors of carbonyl compounds and other VOCs in commercial airliner cabins: On-board investigation of 56 flights. INDOOR AIR 2021; 31:2084-2098. [PMID: 34240486 DOI: 10.1111/ina.12903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) as a non-negligible aircraft cabin air quality (CAQ) factor influence the health and comfort of passengers and crew members. On-board measurements of carbonyls (short-chain (C1 -C6 )) and other volatile organic compounds (VOCs, long-chain (C6 -C16 )) with a total of 350 samples were conducted in 56 commercial airliner cabins covering 8 aircraft models in this study. The mean concentration for each individual carbonyl compound was between 0.3 and 8.3 μg/m3 (except for acrolein & acetone, average = 20.7 μg/m3 ) similar to the mean concentrations of other highly detected VOCs (long-chain (C6 -C16 ), 97% of which ranged in 0-10 μg/m3 ) in aircraft cabins. Formaldehyde concentrations in flights were significantly lower than in residential buildings, where construction materials are known formaldehyde sources. Acetone is a VOC emitted by humans, and its concentration in flights was similar to that in other high-occupant density transportation vehicles. The variation of VOC concentrations in different flight phases of long-haul flights was the same as that of CO2 concentration except for the meal phase, which indicates the importance of cabin ventilation in diluting the gaseous contaminants, while the sustained and slow growth of the VOC concentrations during the cruising phase in short-haul flights indicated that the ventilation could not adequately dilute the emission of VOCs. For the different categories of VOCs, the mean concentration during the cruising phase of benzene series, aldehydes, alkanes, other VOCs (detection rate > 50%), and carbonyls in long-haul flights was 44.2 µg/m3 , 17.9 µg/m3 , 18.6 µg/m3 , 31.5 µg/m3 , and 20.4 µg/m3 lower than those in short-haul flights, respectively. Carbonyls and d-limonene showed a significant correlation with meal service (p < 0.05). Unlike the newly decorated rooms or new vehicles, the inner materials were not the major emission sources in aircraft cabins. Practical Implications. The on-board measurements of 56 flights enrich the VOC database of cabin environment, especially for carbonyls. The literature review of carbonyls in the past 20 years contributes to the understanding the current status of cabin air quality (CAQ). The analysis of VOC concentration variation for different flight phases, flight duration, and aircraft age lays a foundation for exploring effective control methods, including ventilation and purification for cabin VOC pollution. The enriched VOC data is helpful to explore the key VOCs of aircraft cabin environment and to evaluate the acute/chronic health exposure risk of pollutants for passengers and crew members.
Collapse
Affiliation(s)
- Yihui Yin
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junzhou He
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jingjing Pei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xikang Cui
- COMAC Beijing Aircraft Technology Research Institute, Beijing, China
| | - Chao-Hsin Lin
- Environmental Control Systems, Boeing Commercial Airplanes, WA, USA
| | - Daniel Wei
- Boeing Research & Technology, Beijing, China
| | - Qingyan Chen
- School of Mechanical Engineering, Purdue University, IN, USA
| |
Collapse
|
4
|
Chen R, Fang L, Liu J, Herbig B, Norrefeldt V, Mayer F, Fox R, Wargocki P. Cabin air quality on non-smoking commercial flights: A review of published data on airborne pollutants. INDOOR AIR 2021; 31:926-957. [PMID: 33896039 DOI: 10.1111/ina.12831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Indexed: 05/24/2023]
Abstract
We reviewed 47 documents published 1967-2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the measurements with the air quality standards and guidelines for aircraft cabins and in some cases buildings. Average levels of VOCs for which limits exist were lower than the permissible levels except for benzene with average concentration at 5.9 ± 5.5 μg/m3 . Toluene, benzene, ethylbenzene, formaldehyde, acetaldehyde, limonene, nonanal, hexanal, decanal, octanal, acetic acid, acetone, ethanol, butanal, acrolein, isoprene and menthol were the most frequently measured compounds. The concentrations of semi-volatile organic compounds (SVOCs) and other contaminants did not exceed standards and guidelines in buildings except for the average NO2 concentration at 12 ppb. Although the focus was on VOCs, we also retrieved the data on other parameters characterizing cabin environment. Ozone concentration averaged 38 ppb below the upper limit recommended for aircraft. The outdoor air supply rate ranged from 1.7 to 39.5 L/s per person and averaged 6.0 ± 0.8 L/s/p (median 5.8 L/s/p), higher than the minimum level recommended for commercial aircraft. Carbon dioxide concentration averaged 1315 ± 232 ppm, lower than what is permitted in aircraft and close to what is permitted in buildings. Measured temperatures averaged 23.5 ± 0.8°C and were generally within the ranges recommended for avoiding thermal discomfort. Relative humidity averaged 16% ± 5%, lower than what is recommended in buildings.
Collapse
Affiliation(s)
- Ruiqing Chen
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Lei Fang
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Britta Herbig
- LMU University Hospital Munich, Institute and Clinic for Occupational, Social and Environmental Medicine, Munich, Germany
| | - Victor Norrefeldt
- Fraunhofer Institute for Building Physics IBP, Holzkirchen Branch, Valley, Germany
| | - Florian Mayer
- Fraunhofer Institute for Building Physics IBP, Holzkirchen Branch, Valley, Germany
| | - Richard Fox
- Aircraft Environment Solutions Inc., San Tan Valley, Arizona, USA
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Gall ET, Mishra AK, Li J, Schiavon S, Laguerre A. Impact of Cognitive Tasks on CO 2 and Isoprene Emissions from Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:139-148. [PMID: 33301299 DOI: 10.1021/acs.est.0c03850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The human body emits a wide range of chemicals, including CO2 and isoprene. To examine the impact of cognitive tasks on human emission rates of CO2 and isoprene, we conducted an across-subject, counterbalanced study in a controlled chamber involving 16 adults. The chamber replicated an office environment. In groups of four, participants engaged in 30 min each of cognitive tasks (stressed activity) and watching nature documentaries (relaxed activity). Measured biomarkers indicated higher stress levels were achieved during the stressed activity. Per-person CO2 emission rates were greater for stressed than relaxed activity (30.3 ± 2.1 vs 27.0 ± 1.7 g/h/p, p = 0.0044, mean ± standard deviation). Isoprene emission rates were also elevated under stressed versus relaxed activity (154 ± 25 μg/h/p vs 116 ± 20 μg/h/p, p = 0.041). The chamber temperature was held constant at 26.2 ± 0.49 °C; incidental variation in temperature did not explain the variance in emission rates. Isoprene emission rates increased linearly with salivary α-amylase levels (r2 = 0.6, p = 0.02). These results imply the possibility of considering cognitive tasks when determining building ventilation rates. They also present the possibility of monitoring indicators of cognitive tasks of occupants through measurement of air quality.
Collapse
Affiliation(s)
- Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| | - Asit Kumar Mishra
- Berkeley Education Alliance for Research in Singapore, Singapore 138602
| | - Jiayu Li
- Berkeley Education Alliance for Research in Singapore, Singapore 138602
| | - Stefano Schiavon
- Center for the Built Environment, University of California, Berkeley, California 94720-2284, United States
| | - Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
6
|
Morrison GC, Eftekhari A, Majluf F, Krechmer JE. Yields and Variability of Ozone Reaction Products from Human Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:179-187. [PMID: 33337871 DOI: 10.1021/acs.est.0c05262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The skin of 20 human participants was exposed to ∼110 ppb O3 and volatile products of the resulting chemistry were quantified in real time. Yields (ppb product emitted/ppb ozone consumed) for 40 products were quantified. Major products of the primary reaction of ozone-squalene included 6-methyl 5-hepten-2-one (6-MHO) and geranyl acetone (GA) with average yields of 0.22 and 0.16, respectively. Other major products included decanal, methacrolein (or methyl vinyl ketone), nonanal, and butanal. Yields varied widely among participants; summed yields ranged from 0.33 to 0.93. The dynamic increase in emission rates during ozone exposure also varied among participants, possibly indicative of differences in the thickness of the skin lipid layer. Factor analysis indicates that much of the variability among participants is due to factors associated with the relative abundance of (1) "fresh" skin lipid constituents (such as squalene and fatty acids), (2) oxidized skin lipids, and (3) exogenous compounds. This last factor appears to be associated with the presence of oleic and linoleic acids and could be accounted for by uptake of cooking oils or personal care products to skin lipids.
Collapse
Affiliation(s)
- Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Francesca Majluf
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Jordan E Krechmer
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| |
Collapse
|
7
|
Headid RJ, Pekas EJ, Wooden TK, Son WM, Layec G, Shin J, Park SY. Impacts of prolonged sitting with mild hypercapnia on vascular and autonomic function in healthy recreationally active adults. Am J Physiol Heart Circ Physiol 2020; 319:H468-H480. [PMID: 32648821 DOI: 10.1152/ajpheart.00354.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prolonged sitting, which is known to impair peripheral vascular function, often occurs in spaces (e.g., offices) with mild hypercapnic atmospheres. However, the effects of prolonged sitting in hypercapnic conditions on vascular function are unknown. Therefore, the purpose of this study was to investigate the effects of prolonged sitting in mild hypercapnic conditions on vascular and autonomic function in humans. Twelve healthy young adults participated in two experimental visits that consisted of sitting for 2.5 h in a control condition [normal atmospheric conditions sitting (PSIT)] or a mild hypercapnic condition (HCAP; CO2 = 1,500 ppm). During each visit, heart rate variability (HRV), blood pressure (BP), pulse wave velocity (PWV), augmentation index (AIx), brachial and popliteal artery flow-mediated dilation (FMD), and near-infrared spectroscopy (NIRS) were assessed before and after prolonged sitting. Sitting significantly decreased AIx in both groups (P < 0.05). Brachial and popliteal FMD were reduced with sitting (P < 0.05), and the reduction in popliteal FMD was amplified by HCAP (P < 0.05). Baseline microvascular oxygenation was decreased following sitting in both groups (P < 0.05). However, microvascular reoxygenation upon cuff release was slower only in HCAP (P < 0.05). HRV, HR, BP, and PWV did not significantly change with sitting in either group (P > 0.05). We conclude that prolonged sitting attenuated both brachial and popliteal endothelial function and was associated with perturbed microcirculation. Additionally, mild hypercapnic conditions further impaired peripheral endothelial and microvascular function. Together, these findings suggest that prolonged sitting is accompanied by a host of deleterious effects on the vasculature, which are exacerbated by mild hypercapnia.NEW & NOTEWORTHY The results of this study reveal that prolonged sitting attenuates endothelial function and microvascular function. Additionally, prolonged sitting with mild hypercapnia, which is similar to everyday environments, further exacerbates peripheral endothelial function and microvascular function.
Collapse
Affiliation(s)
- Ronald J Headid
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Won-Mok Son
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts.,Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts
| | - John Shin
- Wiess School of Natural Sciences, Rice University, Houston, Texas
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
8
|
Veenaas C, Ripszam M, Glas B, Liljelind I, Claeson AS, Haglund P. Differences in chemical composition of indoor air in rooms associated/not associated with building related symptoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137444. [PMID: 32325564 DOI: 10.1016/j.scitotenv.2020.137444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Building related health effects or symptoms (BRS), known also as sick-building syndrome (SBS), are a phenomenon that is not well understood. In this study, air samples from 51 rooms associated with BRS and 34 control rooms were collected on multi-sorbent tubes and analyzed by a non-target approach using comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry techniques. The large amount of data gathered was analyzed using multivariate statistics (principle component analysis (PCA) and partial least squares (PLS)). This new analysis approach revealed that in rooms where people experienced BRS, petrochemicals and chemicals emitted from plastics were abundant, whereas in rooms where people did not experience BRS, flavor and fragrance compounds were abundant. Among the petrochemicals benzene and 2-butoxyethanol were found in higher levels in rooms where people experienced BRS. The levels of limonene were sometimes in the range of reported odor thresholds, and similarly 3-carene and beta-myrcene were found in higher concentrations in indoor air of rooms where people did not experience BRS. It cannot be ruled out that these compounds may have influenced the perceived air quality. However, the overall variability in air concentrations was large and it was not possible to accurately predict if the air in a particular room could cause BRS or not.
Collapse
Affiliation(s)
- Cathrin Veenaas
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Bo Glas
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Liljelind
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Peter Haglund
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
9
|
Wolkoff P, Nielsen GD. Comment on: "Human symptom responses to bioeffluents, short-chain carbonyl/acids and long-chain carbonyls in a simulated aircraft cabin environment" by Weisel et al., Indoor Air (2017). INDOOR AIR 2017; 27:1224-1225. [PMID: 29024111 DOI: 10.1111/ina.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- P Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - G D Nielsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|