1
|
Foster BL, Boyce AM, Millán JL, Kramer K, Ferreira CR, Somerman MJ, Wright JT. Inherited phosphate and pyrophosphate disorders: New insights and novel therapies changing the oral health landscape. J Am Dent Assoc 2024:S0002-8177(24)00370-2. [PMID: 39127957 DOI: 10.1016/j.adaj.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mineral metabolism is critical for proper development of hard tissues of the skeleton and dentition. The dentoalveolar complex includes the following 4 mineralized tissues: enamel, dentin, cementum, and alveolar bone. Developmental processes of these tissues are affected by inherited disorders that disrupt phosphate and pyrophosphate homeostasis, although manifestations are distinct from those in the skeleton. TYPES OF STUDIES REVIEWED The authors discuss original data from experiments and comparative analyses and review articles describing effects of inherited phosphate and pyrophosphate disorders on dental tissues. A particular emphasis is placed on how new therapeutic approaches for these conditions may affect oral health and dental treatments of affected patients. RESULTS Disorders of phosphate and pyrophosphate metabolism can lead to reduced mineralization (hypomineralization) or inappropriate (ectopic) calcification of soft tissues. Disruptions in phosphate levels in X-linked hypophosphatemia and hyperphosphatemic familial tumoral calcinosis and disruptions in pyrophosphate levels in hypophosphatasia and generalized arterial calcification of infancy contribute to dental mineralization defects. Traditionally, there have been few options to ameliorate dental health problems arising from these conditions. New antibody and enzyme replacement therapies bring possibilities to improve oral health in affected patients. PRACTICAL IMPLICATIONS Research over the past 2 decades has exponentially expanded the understanding of mineral metabolism, and has led to novel treatments for mineralization disorders. Newly implemented and emerging therapeutic strategies affect the dentoalveolar complex and interact with aspects of oral health care that must be considered for dental treatment, clinical trial design, and coordination of multidisciplinary care teams.
Collapse
|
2
|
Larid G, Vix J, Preuss P, Robin F, Tison A, Delaveau C, Krajewski F, Bouvard B, Chu Miow Lin D, Guggenbuhl P, Maugars Y, Saraux A, Debiais F. Detection of hypophosphatasia in hospitalised adults in rheumatology and internal medicine departments: a multicentre study over 10 years. RMD Open 2024; 10:e004316. [PMID: 38580346 PMCID: PMC11002352 DOI: 10.1136/rmdopen-2024-004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Hypophosphatasia (HPP) is a rare genetic disease caused by loss-of-function mutations in the ALPL gene encoding the tissue non-specific alkaline phosphatase (ALP). Mild HPP is usually misdiagnosed in adult age. While an elevated serum ALP value draws more attention than a low value, low serum ALP should be better recognised and may lead to HPP detection. METHODS Patients were selected from the records of the biochemistry department of six University Hospitals in France. Patients were hospitalised in the departments of rheumatology and internal medicine between 2007 and 2017. RESULTS 56 321 hospitalised patients had at least 2 serum ALP dosages and 664 of these patients had at least 2 low serum ALP≤35 UI/L. Among these 664 patients, 482 (72.6%) had fluctuating low values (mean age 62.9 years; 60% of women) and 182 patients (27.4%) had persistent low values below 35 IU/L (mean age 53.4 years; 67% of women). Among patients with persistent hypophosphatasaemia treated with bisphosphonates, 70.8% never had ALP measurement before treatment and 20.8% were treated despite an abnormal decrease of ALP. Genetic testing was performed in 18 patients and was positive in 11. Genetic diagnosis of HPP was at least 6.0% in persistent hypophosphatasaemia and at least 15.9% in patients with at least three symptoms suggestive of HPP. CONCLUSION In this 10-year retrospective study, 0.32% of adult patients hospitalised in the rheumatology and internal medicine departments had persistently low serum ALP, and among them, 6% had genetically proven HPP. Reported hypophosphatasaemia represented only 3.6% of hospitalised patients.
Collapse
Affiliation(s)
- Guillaume Larid
- Department of Rheumatology, CHU Poitiers, Poitiers, France
- LITEC, Poitiers University, Poitiers, France
| | - Justine Vix
- Department of Rheumatology, CHU Poitiers, Poitiers, France
| | | | | | | | | | | | | | - Delphine Chu Miow Lin
- Department of Rheumatology, CHU de Tours, Tours, France
- Université de Tours, Tours, France
| | | | | | | | | |
Collapse
|
3
|
Baroncelli GI, Carlucci G, Freri E, Giuca MR, Guarnieri V, Navarra G, Toschi B, Mora S. The diagnosis of hypophosphatasia in children as a multidisciplinary effort: an expert opinion. J Endocrinol Invest 2024; 47:739-747. [PMID: 37752373 PMCID: PMC10904512 DOI: 10.1007/s40618-023-02199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Hypophosphatasia (HPP) is a rare genetic disorder in which pathogenic variants of the ALPL gene lead to a marked decrease of tissue non-specific alkaline phosphatase (TNSALP) activity. Although HPP is a systemic disorder, its clinical manifestations are more evident on bones, teeth, muscle and central nervous system. The clinical spectrum ranges from severe forms with extreme skeletal deformities, respiratory impairment, seizures, to very mild forms with onset in late adulthood and few clinical signs. The diagnosis can be suspected by measurement of TNSALP activity, but the insufficient awareness among health professionals and the lack of official guidelines are responsible for delayed diagnosis in children with HPP. The purpose of the current document is to provide an expert opinion directed at optimizing the diagnostic pathway of pediatric HPP. From April to December 2022, a multidisciplinary working group of 6 experts including two pediatric endocrinologists, a pediatric neurologist, a pediatric odontologist, a clinical geneticist, and a molecular biologist gathered in a series of periodic meetings to discuss the main issues related to the diagnosis of HPP in children and formalize an Expert Opinion statement. The experts agreed on a diagnostic trail that begins with the recognition of specific clinical signs, leading to biochemical analyses of TNSALP activity and vitamin B6 serum concentration. Very important are the neurological and dental manifestation of the disease that should be thoroughly investigated. The evaluation of TNSALP activity must consider sex and age variability and low activity must be persistent. Repeated blood measurements are thus necessary. The molecular analysis is then mandatory to confirm the diagnosis and for genetic counseling.
Collapse
Affiliation(s)
- G I Baroncelli
- Pediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - G Carlucci
- OPT S.P.A., Soluzioni Per Il Mondo Healthcare, Milan, Italy
| | - E Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M R Giuca
- Unit of Pediatric Dentistry, Department of Surgical Medical Molecular Pathology and Critical Area, Dental and Oral Surgery Clinic, University of Pisa, Pisa, Italy
| | - V Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - G Navarra
- OPT S.P.A., Soluzioni Per Il Mondo Healthcare, Milan, Italy
| | - B Toschi
- Section of Medical Genetics, Department of Medical and Oncological Area, University Hospital, Pisa, Italy
| | - S Mora
- Laboratory of Pediatric Endocrinology, Department of Pediatrics, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
4
|
Okawa R, Nakano K. Dental manifestation and management of hypophosphatasia. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:208-216. [PMID: 35814738 PMCID: PMC9260292 DOI: 10.1016/j.jdsr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
Hypophosphatasia is an inherited metabolic disorder characterized by defective mineralization of bones and teeth with a wide variety of manifestations, ranging from stillbirth to dental symptoms alone. Recently, the prognosis of severe hypophosphatasia patients has been greatly improved by the introduction of enzyme replacement therapy. The typical dental manifestation is early exfoliation of primary teeth due to disturbed cementum formation, so dentures are recommended to ensure that important oral functions are acquired. Some studies have shown that enzyme replacement therapy improves dental mineralization, resulting in the stabilization of periodontal tissues and better growth of tooth roots. A nationwide Japanese survey revealed the common genetic and dental manifestations of patients with mild hypophosphatasia, which markedly differ from those of the severe forms. There may be many undiagnosed mild patients, so dentists should contribute to the early diagnosis by screening possible cases based on the typical finding of early exfoliation of primary teeth. Early diagnosis is important for patients to receive early intervention in both medical and dental fields. The establishment of fundamental dental therapy to solve the dental problems is still underway and is eagerly anticipated.
Collapse
|
5
|
Mohamed FF, Chavez MB, Huggins S, Bertels J, Falck A, Suva LJ, Foster BL, Gaddy D. Dentoalveolar Defects of Hypophosphatasia are Recapitulated in a Sheep Knock-In Model. J Bone Miner Res 2022; 37:2005-2017. [PMID: 36053890 PMCID: PMC9613530 DOI: 10.1002/jbmr.4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022]
Abstract
Hypophosphatasia (HPP) is the inherited error-of-metabolism caused by mutations in ALPL, reducing the function of tissue-nonspecific alkaline phosphatase (TNAP/TNALP/TNSALP). HPP is characterized by defective skeletal and dental mineralization and is categorized into several clinical subtypes based on age of onset and severity of manifestations, though premature tooth loss from acellular cementum defects is common across most HPP subtypes. Genotype-phenotype associations and mechanisms underlying musculoskeletal, dental, and other defects remain poorly characterized. Murine models that have provided significant insights into HPP pathophysiology also carry limitations including monophyodont dentition, lack of osteonal remodeling of cortical bone, and differing patterns of skeletal growth. To address this, we generated the first gene-edited large-animal model of HPP in sheep via CRISPR/Cas9-mediated knock-in of a missense mutation (c.1077C>G; p.I359M) associated with skeletal and dental manifestations in humans. We hypothesized that this HPP sheep model would recapitulate the human dentoalveolar manifestations of HPP. Compared to wild-type (WT), compound heterozygous (cHet) sheep with one null allele and the other with the targeted mutant allele exhibited the most severe alveolar bone, acellular cementum, and dentin hypomineralization defects. Sheep homozygous for the mutant allele (Hom) showed alveolar bone and hypomineralization effects and trends in dentin and cementum, whereas sheep heterozygous (Het) for the mutation did not exhibit significant effects. Important insights gained include existence of early alveolar bone defects that may contribute to tooth loss in HPP, observation of severe mantle dentin hypomineralization in an HPP animal model, association of cementum hypoplasia with genotype, and correlation of dentoalveolar defects with alkaline phosphatase (ALP) levels. The sheep model of HPP faithfully recapitulated dentoalveolar defects reported in individuals with HPP, providing a new translational model for studies into etiopathology and novel therapies of this disorder, as well as proof-of-principle that genetically engineered large sheep models can replicate human dentoalveolar disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Fatma F. Mohamed
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Michael B. Chavez
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Shannon Huggins
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| | - Joshua Bertels
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| | - Brian L. Foster
- Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusOHUSA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
6
|
Weider M, Schlagenhauf U, Seefried L. Oral health status of adult hypophosphatasia patients– a cross‐sectional study. J Clin Periodontol 2022; 49:1253-1261. [DOI: 10.1111/jcpe.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Margareta Weider
- Division of Periodontology University Hospital Wuerzburg Germany
| | | | - Lothar Seefried
- Clinical Trial Unit, Orthopedic Department University of Wuerzburg Germany
| |
Collapse
|
7
|
Hirst L, Chakrapani A, Mubeen S. Inborn errors of metabolism and their impact in paediatric dentistry. J Inherit Metab Dis 2022; 45:417-430. [PMID: 35244948 DOI: 10.1002/jimd.12493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
The management of paediatric patients with inborn errors of metabolism (IEM) presents an unparalleled challenge for paediatric dentists owing to the multiplex of interrelated dental manifestations and metabolic management necessitating modifications to dental care. Inborn errors of metabolism describe a largely heterogenous group of genetic disorders namely attributable to a single gene defect essential for a specific metabolic pathway. Approximately 400 disorders have been described with an overall incidence of 1 in 5000 live births worldwide. Clinical presentation is classically inconspicuous and insidious in the neonatal period with pathophysiology attributable to accumulation of toxic by-products which interfere with normal function, or insufficient synthesis of essential compounds. This paper aims to discuss the primary oral and maxillofacial manifestations across the scope of inborn errors of metabolism, whilst also considering how metabolic treatment has the propensity to complicate dental management.
Collapse
Affiliation(s)
- Lorna Hirst
- Dental and Maxillofacial Department, Great Ormond Street Hospital, London, United Kingdom
| | - Anupam Chakrapani
- Metabolic Department, Great Ormond Street Hospital, London, United Kingdom
| | - Suhaym Mubeen
- Dental and Maxillofacial Department, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
8
|
Evaluation of alveolar bone hypomineralization in pediatric hypophosphatasia using orthopantomography. Sci Rep 2022; 12:1211. [PMID: 35075203 PMCID: PMC8786966 DOI: 10.1038/s41598-022-05171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Hypophosphatasia (HPP) is a metabolic disease characterized by impaired bone mineralization and early exfoliation of primary teeth. This study was performed to develop a method for quantitatively evaluating alveolar bone hypomineralization using orthopantomographic images. Alveolar bone density was defined according to the pixel values and corrected by brightness shown by an indicator applied to the orthopantomographic device. Images of 200 healthy subjects (aged 2-15 years) were classified into five age groups. The corrected pixel values were significantly lower in the younger group than in those aged 14-15 years (2-4, 5-7, and 8-10 years versus 14-15 years: P < 0.0001, 11-13 years versus 14-15 years: P < 0.01). Orthopantomographic images of 17 patients with HPP were evaluated. The corrected pixel values of three-fourths of the patients with odonto type HPP were lower than the mean values of the healthy group. One-third of patients treated with enzyme replacement therapy showed higher corrected pixel values than the healthy group. Our results suggest that odonto type HPP without skeletal problems is occasionally accompanied by hypomineralization of alveolar bone and that alveolar bone hypomineralization in patients with severe HPP is possibly improved by enzyme replacement therapy.
Collapse
|
9
|
Schroth RJ, Long C, Lee VHK, Alai-Towfigh H, Rockman-Greenberg C. Dental outcomes for children receiving asfotase alfa for hypophosphatasia. Bone 2021; 152:116089. [PMID: 34175501 DOI: 10.1016/j.bone.2021.116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Hypophosphatasia, a genetic disease impeding development of teeth and bones, is associated with premature exfoliation of primary teeth. Hypophosphatasia is caused by mutations in the ALPL gene, which encodes the tissue non-specific form of alkaline phosphatase. Asfotase alfa (Strensiq®) is a human recombinant bone-targeted alkaline phosphatase. OBJECTIVES To review development and exfoliation patterns of primary/permanent teeth in a cohort of patients with hypophosphatasia enrolled in an open-label clinical trial of enzyme replacement therapy (ERT) with asfotase alfa. METHODS Data were collected from existing study files of a cohort of patients ≤5 years of age with infantile hypophosphatasia. Children were recruited at the Winnipeg site of a global clinical trial and were treated with ERT. Dental information, including the exfoliation/eruption patterns, were recorded at each visit. RESULTS Eleven children (7 females, 4 males) participated. Participants enrolled as infants (5 infants; mean age 3.0 ± 2.3 months) prematurely lost significantly fewer teeth to hypophosphatasia than patients recruited as preschoolers (6 preschoolers; mean age 52.5 ± 11.3 months), who started on asfotase alfa at a later age. Conclusion The oral health of children with early onset infantile hypophosphatasia may be improved with early and continued administration of ERT, compared to institution of therapy later in childhood.
Collapse
Affiliation(s)
- Robert J Schroth
- Rady Faculty of Health Sciences, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Canada; Section of Pediatric Dentistry, Winnipeg Regional Health Authority, Canada; Shared Health Manitoba, Canada.
| | - Catherine Long
- Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Victor H K Lee
- Rady Faculty of Health Sciences, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Canada
| | | | - Cheryl Rockman-Greenberg
- Rady Faculty of Health Sciences, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Canada; Shared Health Manitoba, Canada
| |
Collapse
|
10
|
Yang Y, Liu Z, Wei L, Taylor TD, Xiao H. Prosthodontic Rehabilitation of a Patient with Hypophosphatasia Using Dental Implants: A Case Report with Seven Years Follow-Up. J Prosthodont 2021; 30:742-746. [PMID: 34453769 DOI: 10.1111/jopr.13419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/26/2022] Open
Abstract
Hypophosphatasia is a rare metabolic inherited dento-osseous disorder. Although there is some available literature on various dental characteristics of hypophosphatasia patients, few reports focus on the effects of hypophosphatasia on the permanent dentition and prosthodontic rehabilitation, particularly in relation to the use of dental implants. This paper reports a case with hypophosphatasia and prosthodontic rehabilitation using dental implants with 7-year follow-up.
Collapse
Affiliation(s)
- Yundong Yang
- Department of Reconstructive Dentistry, Yantai Stomatological Hospital Development Zone Branch, Shandong Province, PR China
| | - Zhonghao Liu
- Binzhou Medical College; Department of Implant Dentistry, Yantai Stomatological Hospital, Shandong Province, PR China
| | - Lingfei Wei
- Department of Implant Dentistry, Yantai Stomatological Hospital, Shandong Province, PR China
| | - Thomas D Taylor
- Department of Reconstructive Sciences, Division of Prosthodontics, UConn School of Dental Medicine, Farmington, CT
| | - Huijuan Xiao
- Department of Reconstructive Dentistry, Yantai Stomatological Hospital Development Zone Branch, Shandong Province, PR China
| |
Collapse
|
11
|
Kapferer-Seebacher I, Foradori L, Zschocke J, Schilke R. Rare Genetic Disorders Affecting the Periodontal Supporting Tissues in Adolescence. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In adolescents periodontal destruction may be the primary manifestation of an as yet unrecognized rare systemic disease, and it may be up to the periodontist to make the correct tentative diagnosis. Many genetic diseases that present with primary periodontal manifestations in adolescence affect immune function, sometimes with only mild or absent systemic features. They include periodontal Ehlers-Danlos syndrome (lack of attached gingiva, various connective tissue abnormalities), Papillon-Lefèvre syndrome (palmoplantar hyperkeratosis), and plasminogen deficiency (fibrin deposition within mucous membranes). Other immune disorders with severe periodontitis manifesting in adolescence are usually diagnosed in early childhood due to unmistakeable systemic features. They include Cohen syndrome (developmental disorder, truncal obesity, and microcephaly), Hermansky-Pudlak Syndrome (oculocutaneous albinism, bleeding diathesis, and other systemic manifestations), glycogen storage disease type 1b, and Chediak-Higashi syndrome (pyogenic infections, albinism, and neuropathy). The structural integrity of periodontal tissue is affected in genodermatoses such as Kindler syndrome, a type of epidermolysis bullosa. In primary hyperoxaluria, inflammatory periodontal destruction is associated with renal calculi. Breakdown of periodontal tissues independent of dental plaque biofilm-induced periodontitis is found in hypophosphatasia (highly variable skeletal hypomineralization) or isolated odontohypophosphatasia, hypophosphatemic rickets and primary hyperparathyroidism. Finally, alveolar osteolysis mimicking localized periodontitis may be due to neoplastic processes, e.g., in neurofibromatosis type 1 (typical skin features including café au lait macules and neurofibromas), Langerhans cell histiocytosis (locally destructive proliferation of bone marrow-derived immature myeloid dendritic cells), and Gorham-Stout disease (diffuse cystic angiomatosis of bone).
Collapse
|
12
|
Okawa R, Kokomoto K, Nakano K. Dental effects of enzyme replacement therapy in case of childhood-type hypophosphatasia. BMC Oral Health 2021; 21:323. [PMID: 34176466 PMCID: PMC8237502 DOI: 10.1186/s12903-021-01673-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background Hypophosphatasia (HPP), a skeletal disease characterized by hypomineralization of bone and teeth, is caused by an ALPL gene mutation that leads to low activity of the tissue non-specific alkaline phosphatase enzyme. Although enzyme replacement therapy (ERT) was recently introduced for affected patients, no known studies have been reported regarding its dental effects related to permanent teeth and jaw bones. In the present study, we examined the dental effects of ERT in a case of childhood-type hypophosphatasia, including panoramic radiography findings used to estimate the dental age of permanent teeth and mandibular bone density. Furthermore, the effects of that therapy on the periodontal condition of the patient were evaluated by comparing periodontal pocket depth before and after initiation. Case presentation An 11-year-1-month-old boy was referred to our clinic for consultation regarding oral management. Two primary incisors had spontaneously exfoliated at 1 year 8 months old and he had been diagnosed with childhood-type HPP at the age of 2 years 2 months. Obvious symptoms were localized in the dental region at the time of diagnosis, though later extended to other parts of the body such as bone pain. ERT was started at 11 years 7 months of age, after which bone pain disappeared, and motor functions and activities of daily living improved. We estimated dental age based on tooth development stage. The age gap between chronological and dental ages was expanded before treatment, and then showed a constant decrease after ERT initiation and finally disappeared. The index for mandibular bone density (mandibular cortical width / length from mesial buccal cusp to apex of first molar) was increased after ERT initiation. Furthermore, the periodontal condition for all teeth except those exfoliated was stable after starting therapy. Conclusions ERT resulted in improved tooth and mandibular bone mineralization, with notably good effects on teeth under formation. Acceleration of mineralization of roots associated with erupting teeth leads to stabilization of the periodontal condition. We concluded that ERT contributed to the improved dental condition seen in this patient. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01673-2.
Collapse
Affiliation(s)
- Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Kazuma Kokomoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int J Mol Sci 2021; 22:ijms22094303. [PMID: 33919113 PMCID: PMC8122659 DOI: 10.3390/ijms22094303] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disease characterized by a decrease in the activity of tissue non-specific alkaline phosphatase (TNSALP). TNSALP is encoded by the ALPL gene, which is abundantly expressed in the skeleton, liver, kidney, and developing teeth. HPP exhibits high clinical variability largely due to the high allelic heterogeneity of the ALPL gene. HPP is characterized by multisystemic complications, although the most common clinical manifestations are those that occur in the skeleton, muscles, and teeth. These complications are mainly due to the accumulation of inorganic pyrophosphate (PPi) and pyridoxal-5′-phosphate (PLP). It has been observed that the prevalence of mild forms of the disease is more than 40 times the prevalence of severe forms. Patients with HPP present at least one mutation in the ALPL gene. However, it is known that there are other causes that lead to decreased alkaline phosphatase (ALP) levels without mutations in the ALPL gene. Although the phenotype can be correlated with the genotype in HPP, the prediction of the phenotype from the genotype cannot be made with complete certainty. The availability of a specific enzyme replacement therapy for HPP undoubtedly represents an advance in therapeutic strategy, especially in severe forms of the disease in pediatric patients.
Collapse
|
14
|
Jandl NM, Schmidt T, Rolvien T, Stürznickel J, Chrysostomou K, von Vopelius E, Volk AE, Schinke T, Kubisch C, Amling M, Barvencik F. Genotype-Phenotype Associations in 72 Adults with Suspected ALPL-Associated Hypophosphatasia. Calcif Tissue Int 2021; 108:288-301. [PMID: 33191482 PMCID: PMC7881968 DOI: 10.1007/s00223-020-00771-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Hypophosphatasia (HPP) is a rare inborn error of metabolism due to a decreased activity of tissue nonspecific alkaline phosphatase (TNSALP). As the onset and severity of HPP are heterogenous, it can be challenging to determine the pathogenicity of detected rare ALPL variants in symptomatic patients. We aimed to characterize patients with rare ALPL variants to propose which patients can be diagnosed with adult HPP. We included 72 patients with (1) clinical symptoms of adult HPP or positive family history and (2) low TNSALP activity and/or high pyridoxal 5'-phosphate (PLP) levels, who underwent ALPL gene sequencing. The patients were analyzed and divided into three groups depending on ALPL variant pathogenicity according to the classification of the American College of Medical Genetics and Genomics (ACMG). Reported pathogenic (n = 34 patients), rare (n = 17) and common (n = 21) ALPL variants only were found. Muscular complaints were the most frequent symptoms (> 80%), followed by bone affection (> 50%). Tooth involvement was significantly more common in patients with pathogenic or rare ALPL variants. Seven rare variants could be classified as likely pathogenic (ACMG class 4) of which five have not yet been described. Inconclusive genetic findings and less specific symptoms make diagnosis difficult in cases where adult HPP is not obvious. As not every pathogenic or rare ALPL variant leads to a manifestation of HPP, only patients with bone complications and at least one additional complication concerning teeth, muscle, central nervous and mental system, repeated low TNSALP activity and high PLP levels should be diagnosed as adult HPP if rare ALPL gene variants of ACMG class 4 or higher support the diagnosis.
Collapse
Affiliation(s)
- Nico Maximilian Jandl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Konstantin Chrysostomou
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Emil von Vopelius
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
15
|
Kramer K, Chavez MB, Tran AT, Farah F, Tan MH, Kolli TN, Dos Santos EJL, Wimer HF, Millán JL, Suva LJ, Gaddy D, Foster BL. Dental defects in the primary dentition associated with hypophosphatasia from biallelic ALPL mutations. Bone 2021; 143:115732. [PMID: 33160095 PMCID: PMC7769999 DOI: 10.1016/j.bone.2020.115732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
ALPL encodes tissue-nonspecific alkaline phosphatase (TNAP), an enzyme expressed in bone, teeth, liver, and kidney. ALPL loss-of-function mutations cause hypophosphatasia (HPP), an inborn error-of-metabolism that produces skeletal and dental mineralization defects. Case reports describe widely varying dental phenotypes, making it unclear how HPP comparatively affects the three unique dental mineralized tissues: enamel, dentin, and cementum. We hypothesized that HPP affected all dental mineralized tissues and aimed to establish quantitative measurements of dental tissues in a subject with HPP. The female proband was diagnosed with HPP during childhood based on reduced alkaline phosphatase activity (ALP), mild rachitic skeletal effects, and premature primary tooth loss. The diagnosis was subsequently confirmed genetically by the presence of compound heterozygous ALPL mutations (exon 5: c.346G>A, p.A116T; exon 10: c.1077C>G, p.I359M). Dental defects in 8 prematurely exfoliated primary teeth were analyzed by high resolution micro-computed tomography (micro-CT) and histology. Similarities to the Alpl-/- mouse model of HPP were identified by additional analyses of murine dentoalveolar tissues. Primary teeth from the proband exhibited substantial remaining root structure compared to healthy control teeth. Enamel and dentin densities were not adversely affected in HPP vs. control teeth. However, analysis of discrete dentin regions revealed an approximate 10% reduction in the density of outer mantle dentin of HPP vs. control teeth. All 4 incisors and the molar lacked acellular cementum by micro-CT and histology, but surprisingly, 2 of 3 prematurely exfoliated canines exhibited apparently normal acellular cementum. Based on dentin findings in the proband's teeth, we examined dentoalveolar tissues in a mouse model of HPP, revealing that the delayed initiation of mineralization in the incisor mantle dentin was associated with a broader lack of circumpulpal dentin mineralization. This study describes a quantitative approach to measure effects of HPP on dental tissues. This approach has uncovered a previously unrecognized novel mantle dentin defect in HPP, as well as a surprising and variable cementum phenotype within the teeth from the same HPP subject.
Collapse
Affiliation(s)
- K Kramer
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A T Tran
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - F Farah
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E J Lira Dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - D Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
16
|
Vislobokova EV, Kiselnikova LP, Lezhnev DA, Murtazaev SS, Sholokhova NA. [Periodontal status evaluation in adolescents with hereditary rickets-like diseases]. STOMATOLOGIIA 2021; 100:63-69. [PMID: 34953191 DOI: 10.17116/stomat202110006163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hypophosphatemic rickets (HPPR) and hypophosphatasia (HPP) are hereditary pathologies accompanied by phosphorus metabolism problems and rickets deformities of the skeleton. Periodontal diseases, their diagnostic methods and factors affecting the progress of periodontal tissue damage are the least studied among the dental manifestations of HPPR and HPP. OBJECTIVE The aim of present cohort study was evaluation of periodontal tissue status in adolescents with HPPR and HPP. MATERIALS AND METHODS A dental examination of 20 adolescents aged 12 to 18 years with genetically and biochemically confirmed hereditary rickets-like diseases (E83.3 Disorders of phosphorus metabolism and phosphatases: hypophosphatemic rickets (HPPR) and hypophosphatasia (HPP)) was performed at the Pediatric Dentistry Department of Moscow State University of Medicine and Dentistry. In the present study clinical examination and cone-beam computed tomography (CBCT) data of patients were analyzed. RESULTS According to the clinical examination data, a strong direct correlation was found between patient's age and the periodontal diseases severity (correlation coefficient r=0.87) in the study group. CBCT revealed the significant alveolar bone hypomineralization in adolescents with HPPR and HPP in comparison to control group (p<0.05). According to the measurement results obtained a strong inverse correlation between alveolar bone mineral density and alveolar bone reduction (correlation coefficient r= -0.74) in adolescents with hereditary rickets-like diseases was revealed. CONCLUSION The diagnostic options of CBCT allow to begin comprehensive dental treatment of patients with HPPR and HPP at an early stage of periodontal disease preventing further development of pathology.
Collapse
Affiliation(s)
- E V Vislobokova
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| | - L P Kiselnikova
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| | - D A Lezhnev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| | - S S Murtazaev
- Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | |
Collapse
|
17
|
Ankylosed Primary Molar in a Japanese Child with Hypophosphatasia. Dent J (Basel) 2020; 9:dj9010003. [PMID: 33383819 PMCID: PMC7823531 DOI: 10.3390/dj9010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/02/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare genetic disorder; affected patients may experience early exfoliation of primary teeth, especially anterior teeth. However, there have been few reports regarding longitudinal follow-up for primary teeth, especially posterior teeth, until their replacement with permanent teeth. Here, we describe a patient with HPP who underwent follow-up from 1 to 9 years of age. A 14-month-old boy was referred to our hospital with the chief complaint of early loss of primary anterior teeth. He was diagnosed with odonto-type HPP by his pediatrician, due to low serum alkaline phosphatase concentration and early exfoliation of primary teeth with bone hypomineralization. The patient experienced exfoliation of three additional primary anterior teeth by 4 years and 1 month of age. Partial dentures were applied for space maintenance; there were no problems regarding subsequent replacement with permanent teeth in the anterior region. However, the primary mandibular right first molar appeared to be submerged when the patient was 8 years and 3 months of age; the severity of submergence was greater when the patient was 9 years of age. The affected primary molar was considered to be ankylosed; it was extracted when the patient was 9 years and 4 months of age. Histopathological analysis of the tooth revealed disturbed cementum formation, which is a typical characteristic of teeth in patients with HPP. On the basis of these findings, we hypothesize that the disturbed cementum formation could lead to susceptibility to early exfoliation of anterior teeth, as well as occurrence of ankylosis involving posterior teeth.
Collapse
|
18
|
Mornet E, Taillandier A, Domingues C, Dufour A, Benaloun E, Lavaud N, Wallon F, Rousseau N, Charle C, Guberto M, Muti C, Simon-Bouy B. Hypophosphatasia: a genetic-based nosology and new insights in genotype-phenotype correlation. Eur J Hum Genet 2020; 29:289-299. [PMID: 32973344 DOI: 10.1038/s41431-020-00732-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Hypophosphatasia (HPP) is caused by pathogenic variants in the ALPL gene. There is a large continuum in the severity, ranging from a lethal perinatal form to dental issues. We analyzed a cohort of 424 HPP patients from European geographic origin or ancestry. Using 3D modeling and results of functional tests we classified ALPL pathogenic variants according to their dominant negative effect (DNE) and their severity. The cohort was described by the genotypes resulting from alleles s (severe recessive), Sd (severe dominant), and m (moderate). Many recurrent variants showed a regional anchor pointing out founder effects rather than multiple mutational events. Homozygosity was an aggravating factor of the severity and moderate alleles were rare both in number and frequency. Pathogenic variants with DNE were found in both recessive and dominant HPP. Sixty percent of the adults tested were heterozygous for a variant showing no DNE, suggesting another mechanism of dominance like haploinsufficiency. Adults with dominant HPP without DNE were found statistically less severely affected than adults with DNE variants. Adults with dominant HPP without DNE represent a new clinical entity mostly diagnosed from 2010s, characterized by nonspecific signs of HPP and low alkaline phosphatase, and for which a high prevalence is expected. In conclusion, the genetic composition of our cohort suggests a nosology with 3 clinical forms: severe HPP is recessive and rare, moderate HPP is recessive or dominant and more common, and mild HPP, characterized by low alkaline phosphatase and unspecific clinical signs, is dominantly inherited and very common.
Collapse
Affiliation(s)
- Etienne Mornet
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France.
| | - Agnès Taillandier
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Christelle Domingues
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Annika Dufour
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Emmanuelle Benaloun
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Nicole Lavaud
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Fabienne Wallon
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Nathalie Rousseau
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Carole Charle
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Mihelaiti Guberto
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Christine Muti
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| | - Brigitte Simon-Bouy
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 78150, Le Chesnay, France
| |
Collapse
|
19
|
Insights into dental mineralization from three heritable mineralization disorders. J Struct Biol 2020; 212:107597. [PMID: 32758526 DOI: 10.1016/j.jsb.2020.107597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Teeth are comprised of three unique mineralized tissues, enamel, dentin, and cementum, that are susceptible to developmental defects similar to those affecting bone. X-linked hypophosphatemia (XLH), caused by PHEX mutations, leads to increased fibroblast growth factor 23 (FGF23)-driven hypophosphatemia and local extracellular matrix disturbances. Hypophosphatasia (HPP), caused by ALPL mutations, results in increased levels of inorganic pyrophosphate (PPi), a mineralization inhibitor. Generalized arterial calcification in infancy (GACI), caused by ENPP1 mutations, results in vascular calcification due to decreased PPi, later compounded by FGF23-driven hypophosphatemia. In this perspective, we compare and contrast dental defects in primary teeth associated with XLH, HPP, and GACI, briefly reviewing genetic and biochemical features of these disorders and findings of clinical and preclinical studies to date, including some of our own recent observations. The distinct dental defects associated with the three heritable mineralization disorders reflect unique processes of the respective dental hard tissues, revealing insights into their development and clues about pathological mechanisms underlying such disorders.
Collapse
|
20
|
Tilden DR, Sheehan JH, Newman JH, Meiler J, Capra JA, Ramirez A, Simmons J, Dahir K. Phenotypic Profiling in Subjects Heterozygous for 1 of 2 Rare Variants in the Hypophosphatasia Gene ( ALPL). J Endocr Soc 2020; 4:bvaa084. [PMID: 32803091 PMCID: PMC7417882 DOI: 10.1210/jendso/bvaa084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022] Open
Abstract
Context Hypophosphatasia (HPP) is a syndrome marked by low serum alkaline phosphatase (AlkP) activity as well as musculoskeletal and/or dental disease. While the majority of subjects with HPP carry a pathogenic variant in the ALPL gene or its regulatory regions, individual pathogenic variants are often not tightly correlated with clinical symptomatology. We sought to better understand the genotype/phenotype correlation in HPP by examining the clinical and biochemical data of 37 subjects with 2 rare variants in ALPL. Methods Through BioVU, a DNA biobank that pairs individuals’ genetic information with their de-identified medical records, we identified subjects with 2 rare variants with distinct reported clinical phenotypes (p.D294A and p.T273M). We then performed a manual review of these subjects’ de-identified medical records along with computational modeling of protein structure to construct a genetic, biochemical and clinical phenotype for each subject and variant. Results Twenty subjects with the p.D294A variant and 17 with the p.T273M variant had sufficient data for analysis. Among subjects in our cohort with the p.D294A variant, 6 (30.0%) had both clinical bone disease and serum AlkP activity below 40 IU/L while 4 subjects (23.5%) with the p.T273M variant met the same criteria despite the distinct clinical phenotypes of these variants. Conclusions Given the loose genotype/phenotype correlation in HPP seen in our cohort, clinical context is crucial for the interpretation of genetic test results to guide clinical care in this population. Otherwise, over- or under-diagnosis may occur, resulting in misidentification of those who may benefit from additional screening and perhaps pharmacologic intervention.
Collapse
Affiliation(s)
- Daniel R Tilden
- Division of Endocrinology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Ian M. Burr Division of Pediatric Endocrinology, Department of Pediatrics, Monroe Carroll Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Jonathan H Sheehan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - John H Newman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University Medical Center Nashville, TN.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John A Capra
- Center for Structural Biology, Vanderbilt University Medical Center Nashville, TN.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biological Sciences and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrea Ramirez
- Division of Endocrinology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jill Simmons
- Ian M. Burr Division of Pediatric Endocrinology, Department of Pediatrics, Monroe Carroll Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Kathryn Dahir
- Division of Endocrinology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Kiselnikova L, Vislobokova E, Voinova V. Dental manifestations of hypophosphatasia in children and the effects of enzyme replacement therapy on dental status: A series of clinical cases. Clin Case Rep 2020; 8:911-918. [PMID: 32477544 PMCID: PMC7250965 DOI: 10.1002/ccr3.2769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 11/11/2022] Open
Abstract
The most frequent dental signs of hypophosphatasia in children are premature loss of primary teeth, decrease in height of alveolar bone, and malocclusions. Enzyme replacement therapy with Asfotase alfa might be associated with stabilization of dental status.
Collapse
Affiliation(s)
- Larisa Kiselnikova
- Pediatric Dentistry DepartmentA.I. Yevdokimov Moscow State University of Medicine and DentistryMoscowRussia
| | - Elena Vislobokova
- Pediatric Dentistry DepartmentA.I. Yevdokimov Moscow State University of Medicine and DentistryMoscowRussia
| | - Victoria Voinova
- Department of Clinical GeneticsResearch and Clinical Institute for Pediatrics Named After Academician Yuri VeltischevPirogov Russian National Research Medical UniversityMoscowRussia
| |
Collapse
|
22
|
Okawa R, Kokomoto K, Kitaoka T, Kubota T, Watanabe A, Taketani T, Michigami T, Ozono K, Nakano K. Japanese nationwide survey of hypophosphatasia reveals prominent differences in genetic and dental findings between odonto and non-odonto types. PLoS One 2019; 14:e0222931. [PMID: 31600233 PMCID: PMC6786601 DOI: 10.1371/journal.pone.0222931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare and intractable metabolic bone disease caused by mutations in the ALPL gene. Here, we undertook a nationwide survey of HPP in Japan, specifically regarding the prominent genetic and dental manifestations of odonto (n = 16 cases) and other (termed “non-odonto”) (n = 36 cases) types. Mean serum alkaline phosphatase (ALP) values in odonto-type patients were significantly greater than those of non-odonto-type patients (P<0.05). Autosomal dominant and autosomal recessive inheritance patterns were detected, respectively, in 89% of odonto-type and 96% of non-odonto-type patients. The ALPL “c.1559delT” mutation, associated with extremely low ALP activity, was found in approximately 70% of cases. Regarding dental manifestations, all patients classified as odonto-type showed early exfoliation of the primary teeth significantly more frequently than patients classified as non-odonto-type (100% vs. 56%; P<0.05). Tooth hypomineralisation was detected in 42% of non-odonto-type patients, but not in any odonto-type patients (0%; P<0.05). Collectively, these results suggest that genetic and dental manifestations of patients with odonto-type and non-odonto-type HPP are significantly different, and these differences should be considered during clinical treatment of patients with HPP.
Collapse
Affiliation(s)
- Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Kazuma Kokomoto
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Kanazawa University Hospital, Ishikawa, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Toshimi Michigami
- Department of Pediatric Nephrology and Metabolism, and Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
23
|
Hypophosphatasia and the importance of the general dental practitioner - a case series and discussion of upcoming treatments. Br Dent J 2019; 224:937-943. [PMID: 29999027 DOI: 10.1038/sj.bdj.2018.441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/07/2023]
Abstract
Hypophosphatasia (HPP) is an inherited metabolic disorder that results in poorly mineralised bones and teeth. Clinical symptoms vary widely from mild dental anomalies to fatal fetal defects. The most common dental symptoms include exfoliation of the primary incisors before the age of three with little or no root resorption, large pulp chambers, alveolar bone loss and thin dentinal walls. There is generally minimal periodontal inflammation associated with the bony destruction and tooth loss. The general dental practitioner is usually the first clinician to spot signs of the milder forms of HPP. Patients diagnosed with dental symptoms in childhood can go on to develop significant morbidity in middle age with chronic bone pain and stress fractures of the long bones. The primary dental care clinician is the key to early diagnosis of such cases, whether they present in childhood or adulthood. Emerging enzyme replacement therapy has considerably changed the landscape of the disease, resulting in astonishing improvements in bone mineralisation and a significant reduction in mortality and morbidity. It is increasingly likely that primary and secondary care clinicians will treat patients with the severe forms of HPP, who would previously not have survived infancy.
Collapse
|
24
|
Abstract
In 2013, a national action plan for people with rare diseases (Nationaler Aktionsplan für Menschen mit Seltenen Erkrankungen, NAMSE) was adopted in the Federal Republic of Germany which is currently in the implementation phase. People with rare diseases are often confronted with huge difficulties in the diagnosis and therapy, and being repeatedly misdiagnosed also leads to psychological stress for those affected and their families. Of the up to 8000 rare diseases, about 15% can manifest in the orofacial region and thus give an indication of the underlying disease. A look in the oral cavity or consultative support to determine the cause of symptoms in the oral and maxillofacial region can possibly help the specialists in internal medicine to find the appropriate diagnosis.
Collapse
Affiliation(s)
- Marcel Hanisch
- Klinik für Mund‑, Kiefer- und Gesichtschirurgie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude W30, 48149, Münster, Deutschland.
| | - Susanne Jung
- Klinik für Mund‑, Kiefer- und Gesichtschirurgie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude W30, 48149, Münster, Deutschland
| | - Johannes Kleinheinz
- Klinik für Mund‑, Kiefer- und Gesichtschirurgie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude W30, 48149, Münster, Deutschland
| |
Collapse
|
25
|
Bowden SA, Foster BL. Alkaline Phosphatase Replacement Therapy for Hypophosphatasia in Development and Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:279-322. [PMID: 31482504 DOI: 10.1007/978-981-13-7709-9_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.
Collapse
Affiliation(s)
- S A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH, USA.
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Okawa R, Miura J, Kokomoto K, Nakano K. Evaluation of avulsed primary incisor in 3-year-old girl with hypophosphatasia who received enzyme replacement therapy. PEDIATRIC DENTAL JOURNAL 2018. [DOI: 10.1016/j.pdj.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Taillandier A, Domingues C, Dufour A, Debiais F, Guggenbuhl P, Roux C, Cormier C, Cortet B, Porquet-Bordes V, Coury F, Geneviève D, Chiesa J, Colin T, Fletcher E, Guichet A, Javier RM, Laroche M, Laurent M, Lausch E, LeHeup B, Lukas C, Schwabe G, van der Burgt I, Muti C, Simon-Bouy B, Mornet E. Genetic analysis of adults heterozygous for ALPL mutations. J Bone Miner Metab 2018; 36:723-733. [PMID: 29236161 DOI: 10.1007/s00774-017-0888-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
Hypophosphatasia (HPP) is a rare inherited metabolic bone disease due to a deficiency of the tissue nonspecific alkaline phosphatase isoenzyme (TNSALP) encoded by the ALPL gene. Patients have consistently low serum alkaline phosphatase (AP), so that this parameter is a good hallmark of the disease. Adult HPP is heterogeneous, and some patients present only mild nonpathognomonic symptoms which are also common in the general population such as joint pain, osteomalacia and osteopenia, chondrocalcinosis, arthropathy and musculoskeletal pain. Adult HPP may be recessively or dominantly inherited; the latter case is assumed to be due to the dominant negative effect (DNE) of missense mutations derived from the functional homodimeric structure of TNSALP. However, there is no biological argument excluding the possibility of other causes of dominant HPP. Rheumatologists and endocrinologists are increasingly solicited for patients with low AP and nonpathognomonic symptoms of HPP. Many of these patients are heterozygous for an ALPL mutation and a challenging question is to determine if these symptoms, which are also common in the general population, are attributable to their heterozygous ALPL mutation or not. In an attempt to address this question, we reviewed a cohort of 61 adult patients heterozygous for an ALPL mutation. Mutations were distinguished according to their statistical likelihood to show a DNE. One-half of the patients carried mutations predicted with no DNE and were slightly less severely affected by the age of onset, serum AP activity and history of fractures. We hypothesized that these mutations result in another mechanism of dominance or are recessive alleles. To identify other genetic factors that could trigger the disease phenotype in heterozygotes for potential recessive mutations, we examined the next-generation sequencing results of 32 of these patients for a panel of 12 genes involved in the differential diagnosis of HPP or candidate modifier genes of HPP. The heterozygous genotype G/C of the COL1A2 coding SNP rs42524 c.1645C > G (p.Pro549Ala) was associated with the severity of the phenotype in patients carrying mutations with a DNE whereas the homozygous genotype G/G was over-represented in patients carrying mutations without a DNE, suggesting a possible role of this variant in the disease phenotype. These preliminary results support COL1A2 as a modifier gene of HPP and suggest that a significant proportion of adult heterozygotes for ALPL mutations may have unspecific symptoms not attributable to their heterozygosity.
Collapse
Affiliation(s)
- Agnès Taillandier
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150, Le Chesnay, France
| | - Christelle Domingues
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150, Le Chesnay, France
| | - Annika Dufour
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150, Le Chesnay, France
| | - Françoise Debiais
- Service de Rhumatologie, CHU de Poitiers, 86021, Poitiers cedex, France
| | - Pascal Guggenbuhl
- Service de Rhumatologie, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP90347, 35203, Rennes cedex 2, France
| | | | | | | | - Valérie Porquet-Bordes
- Endocrinologie, Maladies Osseuses, Génétique et Gynécologie Médicale, Hôpital des Enfants, CHU de Toulouse, Toulouse Cedex 9, France
| | - Fabienne Coury
- Service de Rhumatologie, CHU Lyon, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - David Geneviève
- Service de Génétique Clinique, Département de Génétique Médicale, maladies rares et médecine personnalisée, CHU Montpellier, université Montpellier, unité Inserm U1183, Montpellier, France
| | - Jean Chiesa
- Department of Genetics, University Hospital, Nîmes, France
| | - Thierry Colin
- Service de Rhumatologie, CH Public du Cotentin, Cherbourg, France
| | - Elaine Fletcher
- Clinical Genetics, Molecular Medicine Center, Western General Hospital, Edinburgh, UK
| | - Agnès Guichet
- Département Biochimie et génétique, CHU d'Angers, Angers, France
| | | | - Michel Laroche
- Service de Rhumatologie, Hôpital Pierre-Paul Riquet, Toulouse, France
| | - Michael Laurent
- Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Ekkehart Lausch
- Universitätsklinikum Freiburg, Zentrum für Kinder- und Jugendmedizin, Freiburg, Germany
| | - Bruno LeHeup
- Médecine infantile 3, CHU Nancy, Vandoeuvre, France
| | - Cédric Lukas
- Département de Rhumatologie, CHRU Montpellier, Montpellier, France
| | - Georg Schwabe
- Otto-Heubner-Centrum für Kinder und Jugendmedizin Allgemeine Päediatrie Charité, Campus Virchow Klinikum Augustenburger Platz 1, Berlin, Germany
| | | | - Christine Muti
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150, Le Chesnay, France
| | - Brigitte Simon-Bouy
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150, Le Chesnay, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150, Le Chesnay, France.
| |
Collapse
|
28
|
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder primarily affecting bone and dental mineralization. Although there is a continuum in the severity of the disease, clinical forms may be arbitrarily distinguished on the basis of age at onset and the presence or absence of bone symptoms: perinatal, infantile, juvenile, adult, prenatal benign, and odontological. Severe forms (perinatal and infantile) are autosomally recessively inherited while less severe forms may be autosomally recessively or dominantly inherited. Genetic counseling is complicated by the coexistence of the two modes of inheritance, the incomplete penetrance of the dominant forms, the markedly variable expression of the disease, including intra-familial expression, and the existence of a benign prenatal form that may sometimes be difficult to distinguish from the severe prenatal form. The disease is due to loss-of-function mutations in the Alkaline Phosphatase-Liver (ALPL) gene encoding the tissue nonspecific alkaline phosphatase (TNSALP). The great variety of missence mutations and the dominant negative effect of some mutations largely explain the clinical heterogeneity. Directed mutagenesis studies allowed further elucidation of the cellular pathophysiology of HPP, classification of the alleles in terms of their severity and dominant negative effect, and molecular explanations of the dominant inheritance mode. Genetics significantly contributed to show that there are in fact two HPPs, rare, severe and recessive HPP, and mild recessive or mild dominant HPP, which is markedly more frequent and probably under-diagnosed. The prevalence of the severe forms of HPP has been estimated to be 1/300,000 in France and Northern Europe while the prevalence of the moderate forms of HPP may reach 1/6,370.
Collapse
Affiliation(s)
- E Mornet
- Service de biologie, unité de génétique constitutionnelle, centre hospitalier de Versailles, Le Chesnay, France.
| |
Collapse
|
29
|
Abstract
Dental anomalies exist in every subtype of hypophosphatasia (HPP), from the most severe to the most moderate, called odontohypophosphatasia. The forms are defined by the age at onset of the initial symptoms. These anomalies affect all dental mineralized tissues from enamel, dentin and cementum to alveolar bone in a gradient proportional to the severity of the disease. Early loss of the deciduous teeth, before 3 years of age, and then possibly of the permanent teeth, is due to an abnormality of the cementum, the tissue attaching the teeth to alveolar bone, and is the most frequent abnormality. Tooth loss is a very important diagnostic sign and needs to be recognized. Patients with HPP need specialized oral and dental care in coordination with the reference and expert centers. The oral and dental signs and their treatment remain poorly known. The recording of the abnormalities and their treatment in a registry is indispensable in order to enhance patient management and oral and dental health.
Collapse
|
30
|
Abstract
Orofacial growth and development is a complex process spanning the life course. This article provides an oral health overview in the context of overall growth, physical and social development from infancy through adolescence. It reviews oral health-specific developmental milestones during childhood (0-12 years) and adolescence (≥13 years). It examines issues particular to each age category or spanning multiple ages (eg, pediatric overweight and obesity, tobacco use, and dental trauma) in relation to oral health and development. In addition, the oral microbiome and its potential role in informing personalized oral health care across the life course is discussed.
Collapse
Affiliation(s)
- Bhavna T Pahel
- Department of Pediatric Dentistry, UNC School of Dentistry, University of North Carolina at Chapel Hill, 4501B Koury Oral Health Sciences Building, CB# 7450, Chapel Hill, NC 27599-7450, USA; Private Practice: Village Family Dental, 510 Hickory Ridge Drive, Suite 101, Greensboro, NC 27409-9779, USA.
| | - Anne Rowan-Legg
- Department of Pediatrics, University of Ottawa and Division of Pediatric Medicine, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Rocio B Quinonez
- Departments of Pediatric Dentistry and Academic Affairs, School of Dentistry, The University of North Carolina at Chapel Hill, 1611 Koury Oral Health Sciences Building, CB# 7450, Chapel Hill, NC 27599-7450, USA
| |
Collapse
|
31
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Bowden SA, Foster BL. Profile of asfotase alfa in the treatment of hypophosphatasia: design, development, and place in therapy. Drug Des Devel Ther 2018; 12:3147-3161. [PMID: 30288020 PMCID: PMC6161731 DOI: 10.2147/dddt.s154922] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypophosphatasia (HPP) is a multi-systemic metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the mineralization-associated enzyme, tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by defective bone and dental mineralization, leading to skeletal abnormalities with complications resulting in significant morbidity and mortality. Management of HPP has been limited to supportive care until the introduction of a recently approved enzyme replacement therapy employing bone-targeted recombinant human TNSALP, asfotase alfa (AA). This new therapy has been transformative as it improves survival in severely affected infants, and overall quality of life in children and adults with HPP. This review provides an overview of HPP, focusing on important steps in the development of AA enzyme replacement therapy, including the drug design, preclinical studies in the HPP mouse model, and outcomes from clinical trials and case report publications to date, with special attention given to response to therapy of skeletal manifestations, biochemical features, and other clinical manifestations. The limitations, adverse effects, and outcomes of AA are outlined and the place in therapy for individuals with HPP is discussed.
Collapse
Affiliation(s)
- Sasigarn A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH 43205, USA,
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
33
|
Dahir KM, Tilden DR, Warner JL, Bastarache L, Smith DK, Gifford A, Ramirez AH, Simmons JS, Black MM, Newman JH, Denny JC. Rare Variants in the Gene ALPL That Cause Hypophosphatasia Are Strongly Associated With Ovarian and Uterine Disorders. J Clin Endocrinol Metab 2018; 103:2234-2243. [PMID: 29659871 PMCID: PMC6456921 DOI: 10.1210/jc.2017-02676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/02/2018] [Indexed: 11/19/2022]
Abstract
Context Mutations in alkaline phosphatase (AlkP), liver/bone/kidney (ALPL), which encodes tissue-nonspecific isozyme AlkP, cause hypophosphatasia (HPP). HPP is suspected by a low-serum AlkP. We hypothesized that some patients with bone or dental disease have undiagnosed HPP, caused by ALPL variants. Objective Our objective was to discover the prevalence of these gene variants in the Vanderbilt University DNA Biobank (BioVU) and to assess phenotypic associations. Design We identified subjects in BioVU, a repository of DNA, that had at least one of three known, rare HPP disease-causing variants in ALPL: rs199669988, rs121918007, and/or rs121918002. To evaluate for phenotypic associations, we conducted a sequential phenome-wide association study of ALPL variants and then performed a de-identified manual record review to refine the phenotype. Results Out of 25,822 genotyped individuals, we identified 52 women and 53 men with HPP disease-causing variants in ALPL, 7/1000. None had a clinical diagnosis of HPP. For patients with ALPL variants, the average serum AlkP levels were in the lower range of normal or lower. Forty percent of men and 62% of women had documented bone and/or dental disease, compatible with the diagnosis of HPP. Forty percent of the female patients had ovarian pathology or other gynecological abnormalities compared with 15% seen in controls. Conclusions Variants in the ALPL gene cause bone and dental disease in patients with and without the standard biomarker, low plasma AlkP. ALPL gene variants are more prevalent than currently reported and underdiagnosed. Gynecologic disease appears to be associated with HPP-causing variants in ALPL.
Collapse
Affiliation(s)
- Kathryn M Dahir
- Division of Endocrinology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel R Tilden
- Department of Internal Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy L Warner
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Derek K Smith
- Departments of Biostatistics and Oral Maxillofacial Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aliya Gifford
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrea H Ramirez
- Division of Endocrinology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jill S Simmons
- Division of Pediatric Endocrinology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margo M Black
- Division of Pediatric Endocrinology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John H Newman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of General Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Abstract
We review here clinical, pathophysiological, diagnostic, genetic and molecular aspects of Hypophosphatasia (HPP), a rare inherited metabolic disorder. The clinical presentation is a continuum ranging from a prenatal lethal form with no skeletal mineralization to a mild form with late adult onset presenting with nonpathognomonic symptoms. The prevalence of severe forms is low, whereas less severe forms are more frequently observed. The disease is caused by loss-of-function mutations in the ALPL gene encoding the Tissue Nonspecific Alkaline Phosphatase (TNSALP), a central regulator of mineralization. Severe forms are recessively inherited, whereas moderate forms are either recessively or dominantly inherited, and the more severe the disease is, the more often it is subject to recessive inheritance. The diagnosis is based on a constantly low alkaline phosphatase (AP) activity in serum and genetic testing that identifies ALPL mutations. More than 340 mutations have been identified and are responsible for the extraordinary clinical heterogeneity. A clear but imperfect genotype-phenotype correlation has been observed, suggesting that other genetic or environmental factors modulate the phenotype. Enzyme replacement therapy is now available for HPP, and other approaches, such as gene therapy, are currently being investigated.
Collapse
Affiliation(s)
- Etienne Mornet
- Unité de Génétique Constitutionnelle, Service de Biologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78150 Le Chesnay, France.
| |
Collapse
|
35
|
Vairamuthu T, Pfeiffer S. A juvenile with compromised osteogenesis provides insights into past hunter-gatherer lives. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 20:1-9. [PMID: 29496206 DOI: 10.1016/j.ijpp.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The Late Archaic in northeastern North America (4500-2800 B.P.) pre-dates reliance on pottery and domesticated plants. It is thought to reflect a highly mobile, seasonal migratory foraging/hunting regimen. A juvenile skeleton with pervasive bone wasting and fragile jaws from the Hind Site (AdHk-1), ca. 3000 B.P., southwestern Ontario, provides evidence of the social context of her family group, including aspects of mobility and food management. The well-preserved bones and teeth are considered in bioarchaeological context. Radiographic, osteometric and cross-sectional geometric approaches to assessing musculoskeletal function are presented, plus differential diagnosis of the bone wasting condition. All bones of the probable female (aged approx. 16yr) show stunting and wasting. Wedged lower vertebral bodies, porous trabeculae, undeveloped bicondylar angles (femur) and abnormally low cortical long bone mass are consistent with chronically reduced ambulation. Few teeth remain in the dramatically resorbed alveoli; slight tooth wear and substantial calculus suggest a modified (soft) diet. Osteogenesis imperfecta type IV is the most probable etiology. The extended survival of this juvenile who may never have walked reflects collective care. The case provides evidence of a past lifeway that appears to have been organized around logistic mobility, including occupational stability and food storage.
Collapse
Affiliation(s)
- Thivviya Vairamuthu
- Department of Anthropology, University of Toronto, 19 Russell Street, Toronto M5S 2S2, Canada.
| | - Susan Pfeiffer
- Department of Anthropology, University of Toronto, 19 Russell Street, Toronto M5S 2S2, Canada; Research Associate, Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa.
| |
Collapse
|
36
|
Witten PE, Fjelldal PG, Huysseune A, McGurk C, Obach A, Owen MAG. Bone without minerals and its secondary mineralization in Atlantic salmon (Salmo salar): the recovery from phosphorus deficiency. J Exp Biol 2018; 222:jeb.188763. [DOI: 10.1242/jeb.188763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
Calcium and phosphorus (P) are the main bone minerals and P-deficiency causes hypomineralized bones (osteomalacia) and malformations. This study uses a P-deficient salmon model to falsify three hypotheses. First, an extended period of dietary P-deficiency does not cause pathologies other than osteomalacia. Second, secondary mineralization of non-mineralized bone is possible. Third, secondary mineralization can restore the bones' mineral composition and mechanical properties.
Post-smolt Atlantic salmon (Salmo salar) received for seven weeks diets with regular P-content (RP), or with a 50% lowered P-content (LP). For additional nine weeks RP animals continued on the regular diet (RP-RP). LP animals continued on the LP-diet (LP-LP), on a regular P diet (LP-RP), or on a high P diet (LP-HP).
After 16 weeks, animals in all groups maintained a non-deformed vertebral column. LP-LP animals continued bone formation albeit without mineralization. Nine weeks of RP diet largely restored the mineral content and mechanical properties of vertebral bodies. Mineralization resumed deep inside the bone and away from osteoblasts. The history of P-deficiency was traceable in LP-RP and LP-HP animals as a ring of low-mineralized bone in the vertebral body endplates but no tissue alterations occurred that foreshadow vertebral body compression or fusion. Large quantities of non-mineralized salmon bone have the capacity to re-mineralize. If 16 weeks of P-deficiency as a single factor is not causal for typical vertebral body malformations other factors remain to be identified. This example of functional bone without minerals may explain why some teleost species can afford to have an extremely low mineralized skeleton.
Collapse
Affiliation(s)
- P. Eckhard Witten
- Ghent University, Biology Department, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Ann Huysseune
- Ghent University, Biology Department, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charles McGurk
- Skretting Aquaculture Research Center, P. O. Box 48, N-4001, Stavanger, Norway
| | - Alex Obach
- Skretting Aquaculture Research Center, P. O. Box 48, N-4001, Stavanger, Norway
| | - Matthew A. G. Owen
- Skretting Aquaculture Research Center, P. O. Box 48, N-4001, Stavanger, Norway
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Several bone disorders affecting the skeleton often are manifest in the maxillofacial region. This review presents the most common bone disorders in children and their dental-oral manifestations: fibrous dysplasia, Paget's disease, osteogenesis imperfecta, renal osteodystrophy, hypophosphatasia, and osteoporosis. The specific intraoral characteristics will reviewed in detail. RECENT FINDINGS Recent studies confirmed the close relationship between the mandible and the maxilla with the most prevalent systemic bone disorders in children. This review will help practitioners to integrate the oral health into the systemic health and improve the multidisciplinary approach of pediatric patients between medicine and dentistry.
Collapse
Affiliation(s)
- Juan F Yepes
- Department of Pediatric Dentistry, Attending Riley Hospital for Children, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
38
|
Okawa R, Miura J, Kokomoto K, Kubota T, Kitaoka T, Ozono K, Nakano K. Early exfoliation of permanent tooth in patient with hypophosphatasia. PEDIATRIC DENTAL JOURNAL 2017. [DOI: 10.1016/j.pdj.2017.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Oral findings in patient with lethal hypophosphatasia treated with enzyme replacement therapy. PEDIATRIC DENTAL JOURNAL 2017. [DOI: 10.1016/j.pdj.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Kishnani PS, Rush ET, Arundel P, Bishop N, Dahir K, Fraser W, Harmatz P, Linglart A, Munns CF, Nunes ME, Saal HM, Seefried L, Ozono K. Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 2017; 122:4-17. [PMID: 28888853 DOI: 10.1016/j.ymgme.2017.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/15/2022]
Abstract
Hypophosphatasia (HPP) is a rare, inherited, systemic, metabolic disorder caused by autosomal recessive mutations or a single dominant-negative mutation in the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). The disease is associated with a broad range of signs, symptoms, and complications, including impaired skeletal mineralization, altered calcium and phosphate metabolism, recurrent fractures, pain, respiratory problems, impaired growth and mobility, premature tooth loss, developmental delay, and seizures. Asfotase alfa is a human, recombinant enzyme replacement therapy that is approved in many countries for the treatment of patients with HPP. To address the unmet need for guidance in the monitoring of patients receiving asfotase alfa, an international panel of physicians with experience in diagnosing and managing HPP convened in May 2016 to discuss treatment monitoring parameters. The panel discussions focused on recommendations for assessing and monitoring patients after the decision to treat with asfotase alfa had been made and did not include recommendations for whom to treat. Based on the consensus of panel members, this review provides guidance on the monitoring of patients with HPP during treatment with asfotase alfa, including recommendations for laboratory, efficacy, and safety assessments and the frequency with which these should be performed during the course of treatment. Recommended assessments are based on patient age and include regular monitoring of biochemistry, skeletal radiographs, respiratory function, growth, pain, mobility and motor function, and quality of life. Because of the systemic presentation of HPP, a coordinated, multidisciplinary, team-based, patient-focused approach is recommended in the management of patients receiving asfotase alfa. Monitoring of efficacy and safety outcomes must be tailored to the individual patient, depending on medical history, clinical manifestations, availability of resources in the clinical setting, and the clinician's professional judgment.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Eric T Rush
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA(2)
| | - Paul Arundel
- Metabolic Bone Team, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, University of Sheffield and Sheffield Children's Hospital, Sheffield S10 2TH, UK
| | - Kathryn Dahir
- Division of Diabetes and Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7UY, UK
| | - Paul Harmatz
- Pediatric Gastroenterology and Nutrition, UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA
| | - Agnès Linglart
- Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre Paris-Sud, APHP, 94270 Le Kremlin Bicêtre, France
| | - Craig F Munns
- Paediatrics & Child Health, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E Nunes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Howard M Saal
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Lothar Seefried
- Orthopedic Department, University of Würzburg, Würzburg, Bavaria 97074, Germany
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Rader BA. Alkaline Phosphatase, an Unconventional Immune Protein. Front Immunol 2017; 8:897. [PMID: 28824625 PMCID: PMC5540973 DOI: 10.3389/fimmu.2017.00897] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.
Collapse
Affiliation(s)
- Bethany A Rader
- Department of Microbiology, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
42
|
Meah F, Basit A, Emanuele N, Emanuele MA. Hypophosphatasia: Review of Bone Mineral Metabolism, Pathophysiology, Clinical Presentation, Diagnosis, and Treatment. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-016-9225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
The Editor recommends this issue's article to the reader: Hypophosphatasia: diagnosis and clinical signs - a dental surgeon perspective. Int J Paediatr Dent 2016; 26:401. [PMID: 27704676 DOI: 10.1111/ipd.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Foster BL, Kuss P, Yadav MC, Kolli TN, Narisawa S, Lukashova L, Cory E, Sah RL, Somerman MJ, Millán JL. Conditional Alpl Ablation Phenocopies Dental Defects of Hypophosphatasia. J Dent Res 2016; 96:81-91. [PMID: 27582029 DOI: 10.1177/0022034516663633] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Loss-of-function mutations in ALPL result in hypophosphatasia (HPP), an inborn error of metabolism that causes defective skeletal and dental mineralization. ALPL encodes tissue-nonspecific alkaline phosphatase, an enzyme expressed in bone, teeth, liver, and kidney that hydrolyzes the mineralization inhibitor inorganic pyrophosphate. As Alpl-null mice die before weaning, we aimed to generate mouse models of late-onset HPP with extended life spans by engineering a floxed Alpl allele, allowing for conditional gene ablation (conditional knockout [cKO]) when crossed with Cre recombinase transgenic mice. The authors hypothesized that targeted deletion of Alpl in osteoblasts and selected dental cells ( Col1a1-cKO) or deletion in chondrocytes, osteoblasts, and craniofacial mesenchyme ( Prx1-cKO) would phenocopy skeletal and dental manifestations of late-onset HPP. Col1a1-cKO and Prx1-cKO mice were viable and fertile, and they did not manifest the epileptic seizures characteristic of the Alpl-/- model of severe infantile HPP. Both cKO models featured normal postnatal body weight but significant reduction as compared with wild type mice by 8 to 12 wk. Plasma alkaline phosphatase for both cKO models at 24 wk was reduced by approximately 75% as compared with controls. Radiography revealed profound skeletal defects in cKO mice, including rachitic changes, hypomineralized long bones, deformations, and signs of fractures. Microcomputed tomography confirmed quantitative differences in cortical and trabecular bone, including decreased cortical thickness and mineral density. Col1a1-cKO mice exhibited classic signs of HPP dentoalveolar disease, including short molar roots with thin dentin, lack of acellular cementum, and osteoid accumulation in alveolar bone. Prx1-cKO mice exhibited the same array of periodontal defects but featured less affected molar dentin. Both cKO models exhibited reduced alveolar bone height and 4-fold increased numbers of osteoclast-like cells versus wild type at 24 wk, consistent with HPP-associated periodontal disease. These novel models of late-onset HPP can inform on long-term skeletal and dental manifestations and will provide essential tools to further studies of etiopathologies and therapeutic interventions.
Collapse
Affiliation(s)
- B L Foster
- 1 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - P Kuss
- 2 Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - M C Yadav
- 2 Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - T N Kolli
- 1 Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - S Narisawa
- 2 Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - L Lukashova
- 3 Hospital for Special Surgery, New York, NY, USA
| | - E Cory
- 4 Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.,5 Center for Musculoskeletal Research, University of California-San Diego, La Jolla, CA, USA
| | - R L Sah
- 4 Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.,5 Center for Musculoskeletal Research, University of California-San Diego, La Jolla, CA, USA.,6 Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, CA, USA
| | - M J Somerman
- 7 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J L Millán
- 2 Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
45
|
Wang ZY, Zhang K, Zheng GS, Qiao W, Su YX. Current concepts in odontohypophosphatasia form of hypophosphatasia and report of two cases. BMC Oral Health 2016; 16:70. [PMID: 27531358 PMCID: PMC4988024 DOI: 10.1186/s12903-016-0266-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hypophosphatasia is a rare inherited disease derived from mutations in tissue non-specific alkaline phosphatase genes, with typical oral symptoms including short root anomaly and dysplasia of dentin or cementum. CASE PRESENTATION Two young female patients presented with short root anomaly with a history of premature loss of deciduous and/or permanent teeth. The laboratory and imaging investigations were performed. One case was diagnosed as odontohypophosphatasia concurrent with hyperthyroidism, the other was odontohypophosphatasia concurrent with multiple radicular cysts. CONCLUSION This report presents two cases of odontohypophosphatasia, a rare disease which is difficult to be diagnosed, and highlights that the history of premature loss of deciduous and/or permanent teeth, oral manifestation and laboratory tests are crucial for clinical diagnosis.
Collapse
Affiliation(s)
- Zhu-yu Wang
- Department of Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kai Zhang
- Department of Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guang-sen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qiao
- Department of Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu-xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Hong Kong, Hong Kong
| |
Collapse
|