1
|
Horinouchi A, Mugita Y, Tomida S, Takizawa C, Haba D, Sanada H, Nakagami G. Incontinence-Associated Dermatitis-Like Skin Changes Induced by the Application of Absorbent Pads Containing Bacteria and Artificial Urine in Rats. Exp Dermatol 2024; 33:e70013. [PMID: 39498974 DOI: 10.1111/exd.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Incontinence-associated dermatitis (IAD) is one of the most serious complications in older people with incontinence. Controlling urine property in absorbent pads could be effective for preventing IAD caused by bacterial urine. However, no animal model has been established to evaluate their effectiveness. This study aimed to induce IAD-like skin changes using absorbent pads containing bacterial urine and to confirm their pathophysiology in rats. Hairless Wistar Yagi rats were divided into the bacteria-containing urine (BU) and the bacteria-free urine (U) groups. A 10-h-attachment of absorbent pads containing artificial urine with/without bacteria to the skin pretreated with sodium lauryl sulfate was performed repeatedly for 5 days. Macroscopic findings and skin barrier function were examined every day, and histological changes, inflammatory responses and bacterial quantification in tissue samples were examined on Day 5. The BU group exhibited significant skin redness from Day 3, significant elevation of transepidermal water loss from Day 1, and histological changes, including significantly thickened epidermis, abnormal keratinocyte differentiation and erythrocyte leakage. Inflammation, confirmed by higher myeloperoxidase-positive cells, elevated tumour necrosis factor-α expression, and vascular endothelial damage, indicated by CD31 and pentraxin 3-positive cells, were observed in the BU group. The bacterial quantification showed no significant difference between the groups. IAD-like skin changes including histological changes and inflammation were suggested to be caused by urine properties altered by bacteria. This study proposed a new animal model for evaluating the effectiveness of absorbent pads in controlling the urine properties of bacterial urine on preventing IAD.
Collapse
Affiliation(s)
- Ai Horinouchi
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Mugita
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daijiro Haba
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Sanada
- Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Wang N, Wu X, Liang J, Liu B, Wang B. Molecular design of hydroxamic acid-based derivatives as urease inhibitors of Helicobacter pylori. Mol Divers 2024; 28:2229-2244. [PMID: 39020133 DOI: 10.1007/s11030-024-10914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/08/2024] [Indexed: 07/19/2024]
Abstract
Helicobacter pylori is the main causative agent of gastric cancer, especially non-cardiac gastric cancers. This bacterium relies on urease producing much ammonia to colonize the host. Herein, the study provides valuable insights into structural patterns driving urease inhibition for high-activity molecules designed via exploring known inhibitors. Firstly, an ensemble model was devised to predict the inhibitory activity of novel compounds in an automated workflow (R2 = 0.761) that combines four machine learning approaches. The dataset was characterized in terms of chemical space, including molecular scaffolds, clustering analysis, distribution for physicochemical properties, and activity cliffs. Through these analyses, the hydroxamic acid group and the benzene ring responsible for distinct activity were highlighted. Activity cliff pairs uncovered substituents of the benzene ring on hydroxamic acid derivatives are key structures for substantial activity enhancement. Moreover, 11 hydroxamic acid derivatives were designed, named mol1-11. Results of molecular dynamic simulations showed that the mol9 exhibited stabilization of the active site flap's closed conformation and are expected to be promising drug candidates for Helicobacter pylori infection and further in vitro, in vivo, and clinical trials to demonstrate in future.
Collapse
Affiliation(s)
- Na Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510630, China
| | - Xiaoyan Wu
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510630, China
| | - Jianhuai Liang
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510630, China
| | - Boping Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510630, China.
| | - Bingfeng Wang
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Owen EJ, Heylen RA, Stewart K, Winyard PG, Jenkins ATA. Detecting and monitoring incontinence associated dermatitis: Does impedance spectroscopy have a part to play? Proc Inst Mech Eng H 2024; 238:655-666. [PMID: 36882988 PMCID: PMC11318234 DOI: 10.1177/09544119231159178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
In this review, current understanding of the prevention and treatment of Incontinence Associated Dermatitis (IAD) is discussed. The need for preventative measures which target specific faecal/urinary irritants is highlighted, including the role of urease inhibitors. There is no existing internationally and clinically accepted method to diagnose and categorise the severity of IAD. Diagnosis currently relies on visual inspection; non-invasive techniques to assess skin barrier function could remove subjectiveness, particularly in darker skin tones. Impedance spectroscopy is a non-invasive technique which can be used to monitor skin barrier function, supporting visual assessments. Six studies (2003-2021) which used impedance to assess dermatitis were reviewed; inflamed skin was distinguishable from healthy skin in each case. This suggests that impedance spectroscopy could be useful in diagnosis early-stage IAD, potentially enabling earlier intervention. Finally, the authors present their initial findings on the role of urease in skin breakdown in an in vivo IAD model, using impedance spectroscopy.
Collapse
Affiliation(s)
- Emily J Owen
- Department of Chemistry, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
4
|
Owen EJ, Heylen RA, Stewart K, Winyard PG, Jenkins ATA. The multi-factorial modes of action of urease in the pathogenesis of incontinence associated dermatitis. SKIN HEALTH AND DISEASE 2024; 4:e349. [PMID: 38846694 PMCID: PMC11150740 DOI: 10.1002/ski2.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 06/09/2024]
Abstract
Background Incontinence Associated Dermatitis (IAD) is a type of skin inflammation caused by chronic exposure to urine and/or faeces. Current treatment strategies involve creating a barrier between the skin and urine/faeces rather than targeting specific irritants. Urease expressing pathogens catalyse the conversion of urea, present in urine, into ammonia. The accumulation of ammonia causes an elevation in skin pH which is believed to activate faecal enzymes which damage skin, and opportunistic pathogens, which lead to secondary infections. Objectives To develop a better, multi-factorial model of IAD pathogenesis, including the effect of urease-expressing bacteria on skin, mechanism of damage of urease and urease-triggered activity of faecal enzymes and secondary pathogens. To study the effect of urease inhibition on preventing IAD skin damage. Methods Five separate studies were made using ex vivo porcine skin and in vivo human skin models. Measurements of the change in skin barrier function were made using skin impedance, trans-epidermal water loss (TEWL), stratum corneum moisture and pH. Skin was exposed to artificial urine, inoculated with various microbes, enzymes and chemicals to examine the influence of: 1) urease-positive Proteus mirabilis 2) ammonia, 3) combination of P. mirabilis and a faecal enzyme, trypsin, 4) combination of P. mirabilis and opportunistic pathogens, Candida albicans and Staphylococcus aureus, 5) inhibition of urease using acetohydroxamic acid (AHA) on barrier function. Results The urease-mediated production of ammonia had two principal effects: it elevated skin pH and caused inflammation, leading to significant breakdown in skin (stratum corneum) barrier function. Urease was found to further increase the activity of faecal enzymes and opportunistic pathogens, due to elevated skin pH. The urease inhibitor, AHA, was shown to have significantly reduced damage to skin barrier function, measured as its electrical resistance. Conclusions Targeted therapeutic strategies should be developed to prevent the manifestation of IAD, rather than creating a generic barrier between skin and urine/faeces. Urease has been identified as a crucial component in the manifestation of IAD, due to its role in the production of ammonia. Urease inhibition provides a promising therapeutic target to halt the progression of IAD.
Collapse
|
5
|
Koudounas S, Minematsu T, Mugita Y, Nakai A, Tobe H, Takizawa C, Kunimitsu M, Nakagami G, Sanada H. Bacterial invasion into the epidermis of rats with sodium lauryl sulphate-irritated skin increases damage and induces incontinence-associated dermatitis. Int Wound J 2022; 20:191-200. [PMID: 35916389 PMCID: PMC9797936 DOI: 10.1111/iwj.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 01/07/2023] Open
Abstract
Incontinence-associated dermatitis (IAD) is caused by prolonged exposure to urine/liquid stool. It is a common and often painful skin condition in older incontinent adults because of poor prevention. Patients with urinary infections are at risk of developing IAD, and to guide the development of novel prevention strategies, we aimed to develop an animal model of IAD by urine and bacteria. First, contralateral sites on the dorsal skin of Sprague-Dawley rats were compromised by sodium lauryl sulphate (SLS), simulating frequent cleansing with soap/water. Filter discs were then placed inside ring-shaped chambers on foam dressings, inoculated with or without Pseudomonas aeruginosa, covered with agarose gels immersed in cultured filtrated urine, and secured in place with an occlusive dressing for 3 days. Untreated and SLS-compromised sites served as controls. The IAD was developed at bacteria-inoculated sites, characterised by severe IAD-like redness that persisted for up to 3 days post-exposure and higher disruption of the skin barrier function compared with non-inoculated sites. Pathological changes included epidermal thickening, partial skin loss, inflammatory cell infiltration, accumulation of red blood cells, and invasion of bacteria into the epidermis. This novel, clinically relevant IAD rat model can serve for future prevention developments.
Collapse
Affiliation(s)
- Sofoklis Koudounas
- Department of Skincare Science, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takeo Minematsu
- Department of Skincare Science, Graduate School of MedicineThe University of TokyoTokyoJapan,Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yuko Mugita
- Department of Gerontological Nursing, Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ayano Nakai
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiromi Tobe
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Chihiro Takizawa
- Department of Gerontological Nursing, Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mao Kunimitsu
- Department of Gerontological Nursing, Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Gojiro Nakagami
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan,Department of Gerontological Nursing, Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiromi Sanada
- Global Nursing Research Center, Graduate School of MedicineThe University of TokyoTokyoJapan,Department of Gerontological Nursing, Wound Care Management, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Research status and development of microbial induced calcium carbonate mineralization technology. PLoS One 2022; 17:e0271761. [PMID: 35867666 PMCID: PMC9334024 DOI: 10.1371/journal.pone.0271761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In nature, biomineralization is a common phenomenon, which can be further divided into authigenic and artificially induced mineralization. In recent years, artificially induced mineralization technology has been gradually extended to major engineering fields. Therefore, by elaborating the reaction mechanism and bacteria of mineralization process, and summarized various molecular dynamics equations involved in the mineralization process, including microbial and nutrient transport equations, microbial adsorption equations, growth equations, urea hydrolysis equations, and precipitation equations. Because of the environmental adaptation stage of microorganisms in sandy soil, their reaction rate in sandy soil environment is slower than that in solution environment, the influencing factors are more different, in general, including substrate concentration, temperature, pH, particle size and grouting method. Based on the characteristics of microbial mineralization such as strong cementation ability, fast, efficient, and easy to control, there are good prospects for application in sandy soil curing, building improvement, heavy metal fixation, oil reservoir dissection, and CO2 capture. Finally, it is discussed and summarized the problems and future development directions on the road of commercialization of microbial induced calcium carbonate precipitation technology from laboratory to field application.
Collapse
|
7
|
Koudounas S, Bader DL, Voegeli D. An exploratory study of the effects of the pH of synthetic urine on skin integrity in healthy participants. Skin Pharmacol Physiol 2022; 35:166-173. [DOI: 10.1159/000522289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
Background: Incontinence-associated dermatitis (IAD) develops from prolonged exposure of skin to urine and/or stool and represents a common complication in older adults, reducing the quality of life. Increased pH is an important etiologic factor of IAD, however, the relationship between urinary pH and skin barrier disruption remains unclear.
Objective: To examine the effects of synthetic urine (s-urine) at various pH on transepidermal water loss (TEWL), stratum corneum hydration (SCH) and skin surface pH.
Methods: S-urine solutions (pH 5.0-9.0) were applied to the volar forearms of 15 healthy participants for 2 hrs, with another site serving as the untreated control. Measurements of TEWL, SCH and skin surface pH were obtained at baseline and after each challenge. Skin buffering capacity was also examined in 5 volunteers by recording skin pH at baseline, after 2 hrs exposure and every 5 mins for 40 mins.
Results: TEWL and SCH were increased following exposure to s-urine compared to baseline values. Although there was tendency for pH to an increase after exposure, further investigation showed that changes are only temporal as pH value is restored to baseline within 5 mins. There were no significant differences between solutions.
Conclusions: This study revealed that urine disrupts healthy skin integrity; however, its effects are not pH dependent. Transient changes were observed on the acid mantle of the skin due to its innate buffering capacity. Future studies need to examine the effects of urine combined with bacteria responsible for pH elevation in patients with urinary incontinence.
Collapse
|
8
|
Isolation and Characterization of Effective Bacteria That Reduce Ammonia Emission from Livestock Manure. Microorganisms 2021; 10:microorganisms10010077. [PMID: 35056525 PMCID: PMC8778969 DOI: 10.3390/microorganisms10010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Ammonia from livestock manure reacts with chemical components discharged from various emission sources to produce airborne particulate matter. This study aimed to investigate a novel effective microbial agent to suppress ammonia gas emitted from manure. Both isolated L12I and 12III strains, identified as Pediococcus acidilactici (PA), were selected for their superior activity in assays performed with the evaluation criteria such as acid production, ammonia decomposition, and urease inhibition, which are key factors influencing ammonia excretion. The survivability of PA strains was confirmed by an increase in DNA abundance in the manure. PA strains lowered the pH of manure and suppressed the growth of hyper-ammonia-producing bacteria (HAB) possessing urease activity. The L12I and 12III treatment groups showed 23.58% and 38.00% emission reductions, respectively. Especially, the 12III strain was proven to be the more effective strain for reducing ammonia gas emission, with the best ability to reduce pH and inhibit HAB. The strains could have an additive effect in improving the manure quality as a nitrogen fertilizer by preserving the total nitrogen and urea content. These results suggest that PA strains can be used as unprecedented microbial agents to improve manure-derived environmental pollution and improve fertilizer quality.
Collapse
|
9
|
Mugita Y, Nakagami G, Minematsu T, Kitamura A, Sanada H. Combination of urease inhibitor and antiseptic inhibits urea decomposition-induced ammonia production by Proteus mirabilis. Int Wound J 2020; 17:1558-1565. [PMID: 32851777 DOI: 10.1111/iwj.13422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022] Open
Abstract
The decomposition of urea into ammonia by urease-producing bacterium shows an elevation in the pH level, which can lead to incontinence-associated dermatitis (IAD). This study aimed to examine the efficacy of a combination of antiseptic and urease inhibitor in inhibiting the decomposition of urea by the urease-producing bacterium Proteus mirabilis. We performed in vitro assays to compare the effects of a combination of antiseptic and urease inhibitor, antiseptic only, urease inhibitor only, and an untreated control with the effects of a urea-containing solution. Cultured P. mirabilis was mixed with urea-containing solution, followed by the addition of antiseptic and/or urease inhibitor. The main outcome used to assess the efficacy of the different treatments was ammonia concentration at 4-hours post-treatment initiation, and multiple comparison analysis was performed using Dunnett's test to compare the results between groups. Ammonia concentrations in samples treated with either antiseptic or urease inhibitor were lower than those in the untreated control, while the combination of antiseptic and urease inhibitor resulted in decreased ammonia concentrations compared with either treatment alone. Therefore, the application of both urease inhibitor and antiseptic is more effective for the inhibition of urea decomposition by urease-producing bacteria. Novel preventive strategies using these reagents may be effective for preventing IAD.
Collapse
Affiliation(s)
- Yuko Mugita
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Kitamura
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|