1
|
Latorre A, Belvisi D, Rothwell JC, Bhatia KP, Rocchi L. Rethinking the neurophysiological concept of cortical myoclonus. Clin Neurophysiol 2023; 156:125-139. [PMID: 37948946 DOI: 10.1016/j.clinph.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom.
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Dubbioso R, Striano P, Tomasevic L, Bilo L, Esposito M, Manganelli F, Coppola A. OUP accepted manuscript. Brain Commun 2022; 4:fcac037. [PMID: 35233526 PMCID: PMC8882005 DOI: 10.1093/braincomms/fcac037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Familial adult myoclonic epilepsy type 2 is a hereditary condition characterized by cortical tremor, myoclonus and epilepsy. It belongs to the spectrum of cortical myoclonus and the sensorimotor cortex hyperexcitability represents an important pathogenic mechanism underlying this condition. Besides pericentral cortical structures, the impairment of subcortical networks seems also to play a pathogenetic role, mainly via the thalamo-cortical pathway. However, the mechanisms underlying cortical–subcortical circuits dysfunction, as well as their impact on clinical manifestations, are still unknown. Therefore, the main aims of our study were to systematically study with an extensive electrophysiological battery, the cortical sensorimotor, as well as thalamo-cortical networks in genetically confirmed familial adult myoclonic epilepsy patients and to establish reliable neurophysiological biomarkers for the diagnosis. In 26 familial myoclonic epilepsy subjects, harbouring the intronic ATTTC repeat expansion in the StAR-related lipid transfer domain-containing 7 gene, 17 juvenile myoclonic epilepsy patients and 22 healthy controls, we evaluated the facilitatory and inhibitory circuits within the primary motor cortex using single and paired-pulse transcranial magnetic stimulation paradigms. We also probed the excitability of the somatosensory, as well as the thalamo-somatosensory cortex connection by using ad hoc somatosensory evoked potential protocols. The sensitivity and specificity of transcranial magnetic stimulation and somatosensory evoked potential metrics were derived from receiver operating curve analysis. Familial adult myoclonic epilepsy patients displayed increased facilitation and decreased inhibition within the sensorimotor cortex compared with juvenile myoclonic epilepsy patients (all P < 0.05) and healthy controls (all P < 0.05). Somatosensory evoked potential protocols also displayed a significant reduction of early high-frequency oscillations and less inhibition at paired-pulse protocol, suggesting a concomitant failure of thalamo-somatosensory cortex circuits. Disease onset and duration and myoclonus severity did not correlate either with sensorimotor hyperexcitability or thalamo-cortical measures (all P > 0.05). Patients with a longer disease duration had more severe myoclonus (r = 0.467, P = 0.02) associated with a lower frequency (r = −0.607, P = 0.001) and higher power of tremor (r = 0.479, P = 0.02). Finally, familial adult myoclonic epilepsy was reliably diagnosed using transcranial magnetic stimulation, demonstrating its superiority as a diagnostic factor compared to somatosensory evoked potential measures. In conclusion, deficits of sensorimotor cortical and thalamo-cortical circuits are involved in the pathophysiology of familial adult myoclonic epilepsy even if these alterations are not associated with clinical severity. Transcranial magnetic stimulation-based measurements display an overall higher accuracy than somatosensory evoked potential parameters to reliably distinguish familial adult myoclonic epilepsy from juvenile myoclonic epilepsy and healthy controls.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
- Correspondence may also be addressed to: Dubbioso Raffaele MD PhD Department of Neurosciences Reproductive Sciences and Odontostomatology University Federico II of Napoli Via Sergio Pansini, 5. 80131 Napoli, Italy E-mail:
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Correspondence to: Striano Pasquale, MD, PhD Department of Neurosciences Rehabilitation, Ophthalmology, Genetics Maternal and Child Health (DiNOGMI) University of Genoa, Via Gaslini 5 padiglione 16, I piano, 16148 Genova, Italy E-mail: ;
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University, Kobenhavn, Denmark
| | - Leonilda Bilo
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| |
Collapse
|
3
|
Abstract
Myoclonus can cause significant disability for patients. Myoclonus has a strikingly diverse array of underlying etiologies, clinical presentations, and pathophysiological mechanisms. Treatment of myoclonus is vital to improving the quality of life of patients with these disorders. The optimal treatment strategy for myoclonus is best determined based upon careful evaluation and consideration of the underlying etiology and neurophysiological classification. Electrophysiological testing including EEG (electroencephalogram) and EMG (electromyogram) data is helpful in determining the neurophysiological classification of myoclonus. The neurophysiological subtypes of myoclonus include cortical, cortical-subcortical, subcortical-nonsegmental, segmental, and peripheral. Levetiracetam, valproic acid, and clonazepam are often used to treat cortical myoclonus. In cortical-subcortical myoclonus, treatment of myoclonic seizures is prioritized, valproic acid being the mainstay of therapy. Subcortical-nonsegmental myoclonus may be treated with clonazepam, though numerous agents have been used depending on the etiology. Segmental and peripheral myoclonus are often resistant to treatment, but anticonvulsants and botulinum toxin injections may be of utility depending upon the case. Pharmacological treatments are often hampered by scarce evidence-based knowledge, adverse effects, and variable efficacy of medications.
Collapse
Affiliation(s)
- Ashley B. Pena
- Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, Florida 32224 USA
| | - John N. Caviness
- Department of Neurology, Mayo Clinic Arizona, 13400 East Shea Blvd., Scottsdale, Arizona 85259 USA
| |
Collapse
|
4
|
Routley B, Shaw A, Muthukumaraswamy SD, Singh KD, Hamandi K. Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity. Epilepsy Res 2020; 163:106324. [PMID: 32335503 PMCID: PMC7684644 DOI: 10.1016/j.eplepsyres.2020.106324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
We investigated whole brain source space connectivity in JME using across standard MEG frequency bands. Connectivity was increased in posterior theta and alpha bands in JME, and decreased in sensorimotor beta band. Our findings highlight altered interactions between posterior networks of arousal and attention and the motor system in JME.
Background Widespread structural and functional brain network changes have been shown in Juvenile Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and anatomical localisation. Methods We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of interest delta (1−4 Hz), theta (4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz) and gamma (40−60 Hz). We used a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of ‘virtual sensors’ for the desired frequency bands, followed by connectivity analysis using correlation between frequency- and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, potentially spurious connections and multiple comparisons. Results We found increased connectivity in the theta band in posterior brain regions, surviving statistical correction for multiple comparisons (corrected p < 0.05), and decreased connectivity in the beta band in sensorimotor cortex, between right pre- and post- central gyrus (p < 0.05) in JME compared to controls. Conclusions Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta – the frequency band associated with long range connections affecting attention and arousal - and decreased beta-band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network and seizure prone states in JME.
Collapse
Affiliation(s)
- Bethany Routley
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Alexander Shaw
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Krish D Singh
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom; The Wales Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, United Kingdom.
| |
Collapse
|
5
|
Nardone R, Versace V, Höller Y, Sebastianelli L, Brigo F, Lochner P, Golaszewski S, Saltuari L, Trinka E. Transcranial magnetic stimulation in myoclonus of different aetiologies. Brain Res Bull 2018; 140:258-269. [DOI: 10.1016/j.brainresbull.2018.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/12/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022]
|
6
|
Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 2018; 11:59-74. [DOI: 10.1016/j.brs.2017.09.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
|
7
|
Vidal-Dourado M, Nunes KF, Guaranha MSB, Giuliano LMP, Yacubian EMT, Manzano GM. Expression of praxis induction on cortical excitability in juvenile myoclonic epilepsy. Clin Neurophysiol 2016; 127:2551-60. [PMID: 27291873 DOI: 10.1016/j.clinph.2016.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of praxis induction on sensorimotor cortical and transcallosal excitability in juvenile myoclonic epilepsy (JME). METHODS A total of 36 subjects (18-62years) were included. The JME group was screened by video-electroencephalography neuropsychological protocol and divided into JME without praxis induction [JME-WI (n=12)], JME with praxis-induced seizures or epileptiform discharges [JME-PI (n=10)], and healthy controls (n=14). Motor and somatosensory cortical excitability and transcallosal pathways were evaluated through single-pulse transcranial magnetic stimulation (sTMS) and somatosensory evoked potentials (SEPs). RESULTS Motor and transcallosal excitabilities tested with sTMS were not different in the motor-dominant or non-dominant hemisphere among groups. Significant differences were found in cortical SEP amplitudes in the P27 component of the non-dominant hemisphere (p=0.03, Cohen's d=0.98), N35 in the dominant hemisphere (p=0.04, Cohen's d=0.96), and P27-35 interpeak amplitude in both somatosensory cortices of the JME-PI group (p=0.03, Cohen's d=0.96; p=0.02, Cohen's d=1.05) when compared with healthy controls. Giant SEPs were observed in two (16.7%) and five (50%) patients of the JME-WI and JME-PI groups, respectively. Cortical latencies did not reveal differences. CONCLUSIONS Praxis induction was associated with enhanced excitability in the somatosensory cortex of JME patients. SIGNIFICANCE These findings may help clarifying the less favorable therapeutic response in the JME-PI group and indicate identifying praxis induction as an important determinant in differentiating between JME patients.
Collapse
Affiliation(s)
- Marcos Vidal-Dourado
- Department of Neurology and Neurosurgery, Division of Neurology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Karlo Faria Nunes
- Department of Neurology and Neurosurgery, Division of Neurology, Section of Clinical Neurophysiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Lydia Maria Pereira Giuliano
- Department of Neurology and Neurosurgery, Division of Neurology, Section of Clinical Neurophysiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elza Márcia Targas Yacubian
- Department of Neurology and Neurosurgery, Division of Neurology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gilberto Mastrocola Manzano
- Department of Neurology and Neurosurgery, Division of Neurology, Section of Clinical Neurophysiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Kandemir M, Gündüz A, Uzun N, Yeni SN, Kızıltan ME. Enhanced blink reflex recovery in juvenile myoclonic epilepsy. Neurosci Lett 2015; 609:7-10. [DOI: 10.1016/j.neulet.2015.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
9
|
Strigaro G, Falletta L, Cerino A, Pizzamiglio C, Tondo G, Varrasi C, Cantello R. Abnormal motor cortex plasticity in juvenile myoclonic epilepsy. Seizure 2015. [DOI: 10.1016/j.seizure.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Chowdhury FA, Pawley AD, Ceronie B, Nashef L, Elwes RDC, Richardson MP. Motor evoked potential polyphasia: a novel endophenotype of idiopathic generalized epilepsy. Neurology 2015; 84:1301-7. [PMID: 25740859 PMCID: PMC4388750 DOI: 10.1212/wnl.0000000000001413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: We compared the motor evoked potential (MEP) phases using transcranial magnetic stimulation in patients with idiopathic generalized epilepsy (IGE), their relatives, and healthy controls, hypothesizing that patients and their unaffected relatives may share a subtle pathophysiologic abnormality. Methods: In a cross-sectional study, we investigated 23 patients with IGE, 34 first-degree relatives, and 30 matched healthy controls. Transcranial magnetic stimulation was performed to produce a series of suprathreshold single-pulse MEPs. A semiautomated method was used to count phases. We compared between groups the mean number of MEP phases, the stimulus-to-stimulus variability in MEP phases, and the proportion of polyphasic MEPs within subjects. Results: Patients with IGE and their relatives had a significantly increased number of MEP phases (median for patients 2.24, relatives 2.17, controls 2.01) and a significantly higher proportion of MEPs with more than 2 phases than controls (median for patients 0.118, relatives 0.088, controls 0.013). Patients had a greater stimulus-to-stimulus variability in number of MEP phases than controls. There were no differences between patients and relatives. Conclusion: Increased MEP polyphasia in patients with IGE and their first-degree relatives may reflect transient abnormal evoked oscillations. The presence of polyphasic MEPs in relatives as well as patients suggests that MEP polyphasia is not related to treatment, and is in isolation insufficient to predispose to epilepsy. Polyphasic MEP may be a novel endophenotype in IGE.
Collapse
Affiliation(s)
- Fahmida A Chowdhury
- From the Department of Clinical Neuroscience (F.A.C., A.D.P., B.C., M.P.R.) and Centre for Epilepsy (L.N., R.D.C.E.), King's College London, UK
| | - Adam D Pawley
- From the Department of Clinical Neuroscience (F.A.C., A.D.P., B.C., M.P.R.) and Centre for Epilepsy (L.N., R.D.C.E.), King's College London, UK.
| | - Bryan Ceronie
- From the Department of Clinical Neuroscience (F.A.C., A.D.P., B.C., M.P.R.) and Centre for Epilepsy (L.N., R.D.C.E.), King's College London, UK
| | - Lina Nashef
- From the Department of Clinical Neuroscience (F.A.C., A.D.P., B.C., M.P.R.) and Centre for Epilepsy (L.N., R.D.C.E.), King's College London, UK
| | - Robert D C Elwes
- From the Department of Clinical Neuroscience (F.A.C., A.D.P., B.C., M.P.R.) and Centre for Epilepsy (L.N., R.D.C.E.), King's College London, UK
| | - Mark P Richardson
- From the Department of Clinical Neuroscience (F.A.C., A.D.P., B.C., M.P.R.) and Centre for Epilepsy (L.N., R.D.C.E.), King's College London, UK
| |
Collapse
|
11
|
Does the region of epileptogenicity influence the pattern of change in cortical excitability? Clin Neurophysiol 2014; 126:249-56. [PMID: 25002368 DOI: 10.1016/j.clinph.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate whether cortical excitability measures on transcranial magnetic stimulation (TMS) differed between groups of patients with different focal epilepsy syndromes. METHODS 85 Patients with focal epilepsy syndromes divided into temporal and extra-temporal lobe epilepsy were studied. The cohorts were further divided into drug naïve-new onset, refractory and seizure free groups. Motor threshold (MT) and paired pulse TMS at short (2, 5, 10, 15 ms) and long (100-300 ms) interstimulus intervals (ISIs) were measured. Results were compared to those of 20 controls. RESULTS Cortical excitability was higher at 2 & 5 ms and 250, 300 ms ISIs (p<0.01) in focal epilepsy syndromes compared to controls however significant inter-hemispheric differences in MT and the same ISIs were only seen in the drug naïve state early at onset and were much more prominent in temporal lobe epilepsy. CONCLUSION Disturbances in cortical excitability are more confined to the affected hemisphere in temporal lobe epilepsy but only early at onset in the drug naïve state. SIGNIFICANCE Group TMS studies show that cortical excitability measures are different in temporal lobe epilepsy and can be distinguished from other focal epilepsies early at onset in the drug naïve state. Further studies are needed to determine whether these results can be applied clinically as the utility of TMS in distinguishing between epilepsy syndromes at an individual level remains to be determined.
Collapse
|
12
|
TMS, cortical excitability and epilepsy: The clinical impact. Epilepsy Res 2014; 108:153-61. [DOI: 10.1016/j.eplepsyres.2013.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/22/2013] [Accepted: 11/12/2013] [Indexed: 01/07/2023]
|
13
|
BAUER PRISCAR, KALITZIN STILIYAN, ZIJLMANS MAEIKE, SANDER JOSEMIRW, VISSER GERHARDH. CORTICAL EXCITABILITY AS A POTENTIAL CLINICAL MARKER OF EPILEPSY: A REVIEW OF THE CLINICAL APPLICATION OF TRANSCRANIAL MAGNETIC STIMULATION. Int J Neural Syst 2014; 24:1430001. [DOI: 10.1142/s0129065714300010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used for safe, noninvasive probing of cortical excitability (CE). We review 50 studies that measured CE in people with epilepsy. Most showed cortical hyperexcitability, which can be corrected with anti-epileptic drug treatment. Several studies showed that decrease of CE after epilepsy surgery is predictive of good seizure outcome. CE is a potential biomarker for epilepsy. Clinical application may include outcome prediction of drug treatment and epilepsy surgery.
Collapse
Affiliation(s)
- PRISCA R. BAUER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| | - STILIYAN KALITZIN
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| | - MAEIKE ZIJLMANS
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - JOSEMIR W. SANDER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - GERHARD H. VISSER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| |
Collapse
|
14
|
Visual cortex hyperexcitability in idiopathic generalized epilepsies with photosensitivity: a TMS pilot study. Epilepsy Behav 2013; 27:301-6. [PMID: 23518608 DOI: 10.1016/j.yebeh.2013.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND The current understanding of the mechanisms underlying photosensitivity is still limited, although most studies point to a hyperexcitability of the visual cortex. METHODS Using transcranial magnetic stimulation, we determined the resting motor threshold (rMT) and the phosphene threshold (PT) in 33 patients with IGEs (8 with photosensitivity) compared with 12 healthy controls. RESULTS Eleven controls (92%) reported phosphenes compared with fifteen (46%) patients with idiopathic generalized epilepsy (p=0.015). Phosphenes were reported more frequently among patients with epilepsy with photosensitivity (87.5%) than in patients with active epilepsy without photosensitivity (30.8%) (p=0.038) and patients with epilepsy in remission without photosensitivity (33.3%) (p=0.054); no differences were found between patients with epilepsy with photosensitivity and controls (p=0.648). Resting motor threshold and phosphene threshold were significantly higher among patients with epilepsy (active epilepsy or epilepsy in remission without photosensitivity) compared to healthy controls (p<0.01). Conversely, patients with active epilepsy and photosensitivity had significantly lower values than controls (p=0.03). CONCLUSIONS The marked decrease in PT and the high phosphene prevalence in patients with IGE with photosensitivity indicate a regional hyperexcitability of the primary visual cortex. Results of this study also suggest that the PT may serve as a biomarker for excitability in patients with IGE and photosensitivity.
Collapse
|
15
|
BADAWY RADWAAB, JACKSON GRAEMED, BERKOVIC SAMUELF, MACDONELL RICHARDAL. CORTICAL EXCITABILITY AND REFRACTORY EPILEPSY: A THREE-YEAR LONGITUDINAL TRANSCRANIAL MAGNETIC STIMULATION STUDY. Int J Neural Syst 2012; 23:1250030. [DOI: 10.1142/s012906571250030x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial magnetic stimulation was used to study the effect of recurrent seizures on cortical excitability over time in epilepsy. 77 patients with firm diagnoses of idiopathic generalized epilepsy (IGE) or focal epilepsy were repeatedly evaluated over three years. At onset, all groups had increased cortical excitability. At the end of follow-up the refractory group was associated with a broad increase in cortical excitability. Conversely, cortical excitability decreased in all seizure free groups after introduction of an effective medication.
Collapse
Affiliation(s)
- RADWA A. B. BADAWY
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| | - GRAEME D. JACKSON
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| | - SAMUEL F. BERKOVIC
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| | - RICHARD A. L. MACDONELL
- Department of Neurology, Austin Health, Heidelberg, Epilepsy Research Centre, Australia
- Department of Medicine, University of Melbourne, Brain Research Institute, Australia
- Florey Neuroscience Institutes Heidelberg West, Victoria, Australia
| |
Collapse
|
16
|
Badawy RAB, Macdonell RAL, Vogrin SJ, Lai A, Cook MJ. Cortical excitability decreases in Lennox-Gastaut syndrome. Epilepsia 2012; 53:1546-53. [DOI: 10.1111/j.1528-1167.2012.03599.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Brigo F, Storti M, Benedetti MD, Rossini F, Nardone R, Tezzon F, Fiaschi A, Bongiovanni LG, Manganotti P. Resting motor threshold in idiopathic generalized epilepsies: a systematic review with meta-analysis. Epilepsy Res 2012; 101:3-13. [PMID: 22542570 DOI: 10.1016/j.eplepsyres.2012.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/24/2022]
Abstract
Resting motor threshold (rMT) assessed by means of Transcranial Magnetic Stimulation (TMS) is thought to reflect trans-synaptic excitability of cortico-spinal neurons. TMS studies reporting rMT in idiopathic generalized epilepsies (IGEs) yielded discrepant results, so that it is difficult to draw a definitive conclusion on cortico-spinal excitability in IGEs by simple summation of previous results regarding this measure. Our purpose was to carry out a systematic review and a meta-analysis of studies evaluating rMT values obtained during single-pulse TMS in patients with IGEs. Controlled studies measuring rMT by single-pulse TMS in drug-naive patients older than 12 years affected by IGEs were systematically reviewed. rMT values were assessed calculating mean difference and odds ratio with 95% confidence intervals (CI). Fourteen trials (265 epileptic patients and 424 controls) were included. Patients with juvenile myoclonic epilepsy (JME) have a statistically significant lower rMT compared with controls (mean difference: -6.78; 95% CI -10.55 to -3.00); when considering all subtypes of IGEs and IGEs other than JME no statistically significant differences were found. Overall considered, the results are indicative of a cortico-spinal hyper-excitability in JME, providing not enough evidence for motor hyper-excitability in other subtypes of IGE. The considerable variability across studies probably reflects the presence of relevant clinical and methodological heterogeneity, and higher temporal variability among rMT measurements over time, related to unstable cortical excitability in these patients.
Collapse
Affiliation(s)
- Francesco Brigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Avanzini G, Manganotti P, Meletti S, Moshé SL, Panzica F, Wolf P, Capovilla G. The system epilepsies: A pathophysiological hypothesis. Epilepsia 2012; 53:771-8. [DOI: 10.1111/j.1528-1167.2012.03462.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Abstract
Myoclonus is complex, and is likely to encompass a number of relatively disparate phenomena. A widely used approach to the classification of myoclonus is a physiological one, in which the major forms are cortical and subcortical. In this classification, cortical forms of myoclonus are defined by the presence of enlarged somatosensory evoked potentials (SEP), back-averaged potentials, and enhanced long latency reflexes, whereas subcortical forms are largely delineated by the absence of these features. In addition to cortical and subcortical types, the presence of generalized spike and wave discharges on EEG indicate the presence of cortical-subcortical interactions, analogous to absence seizures of idiopathic generalized epilepsy. However, a number of difficulties arise in applying these criteria to many forms of myoclonus: One can conclude that it is likely that many forms of myoclonus lie on a spectrum between myoclonus and tremor. Some have clearcut evidence for being of cortical origin, whereas others are cortical-subcortical or purely subcortical. The role of subcortical structures in influencing electrophysiological phenomena is poorly understood, and merits further investigation.
Collapse
|
20
|
Vollmar C, O'Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Janz D, Richardson MP, Koepp MJ. Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain 2011; 134:1710-9. [PMID: 21616969 PMCID: PMC3102244 DOI: 10.1093/brain/awr098] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.
Collapse
Affiliation(s)
- Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prospects for Clinical Applications of Transcranial Magnetic Stimulation and Real-Time EEG in Epilepsy. Brain Topogr 2009; 22:257-66. [DOI: 10.1007/s10548-009-0116-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 10/26/2009] [Indexed: 11/27/2022]
|
22
|
Cortical excitability in juvenile myoclonic epileptic patients and their asymptomatic siblings: A transcranial magnetic stimulation study. Seizure 2009; 18:387-91. [DOI: 10.1016/j.seizure.2009.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 12/16/2008] [Accepted: 02/06/2009] [Indexed: 11/19/2022] Open
|
23
|
Recruitment of motor cortex inhibition differentiates between generalized and focal epilepsy. Epilepsy Res 2009; 84:210-6. [DOI: 10.1016/j.eplepsyres.2009.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/23/2009] [Accepted: 02/01/2009] [Indexed: 11/23/2022]
|
24
|
Berardelli A, Abbruzzese G, Chen R, Orth M, Ridding MC, Stinear C, Suppa A, Trompetto C, Thompson PD. Consensus paper on short-interval intracortical inhibition and other transcranial magnetic stimulation intracortical paradigms in movement disorders. Brain Stimul 2008; 1:183-91. [DOI: 10.1016/j.brs.2008.06.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022] Open
|
25
|
Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rösler KM, Triggs WJ, Ugawa Y, Ziemann U. The clinical diagnostic utility of transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol 2008; 119:504-532. [DOI: 10.1016/j.clinph.2007.10.014] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 12/11/2022]
|
26
|
Auvin S, Derambure P, Cassim F, Vallée L. Myoclonies et myoclonies épileptiques : orientation diagnostique et connaissances physiopathologiques. Rev Neurol (Paris) 2008; 164:3-11. [DOI: 10.1016/j.neurol.2007.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 08/22/2007] [Indexed: 11/17/2022]
|
27
|
Houdayer E, Devanne H, Tyvaert L, Defebvre L, Derambure P, Cassim F. Low frequency repetitive transcranial magnetic stimulation over premotor cortex can improve cortical tremor. Clin Neurophysiol 2007; 118:1557-62. [PMID: 17531531 DOI: 10.1016/j.clinph.2007.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/02/2007] [Accepted: 04/14/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine the effects of a 30 min, 1 Hz subthreshold rTMS in a case of cortical tremor which is caused by hyperexcitability of sensorimotor cortex. METHODS Stimulation was applied over primary and, in a second time, over premotor cortex (M1 and PMC, respectively). Tremor was monitored by accelerometers placed on the index fingers of hands outstretched, before and several times after rTMS. Each rTMS session consisted of 1800 pulses delivered at 1 Hz with an intensity of 90% of resting motor threshold. RESULTS PMC but not M1 stimulation led to a decrease of the postural tremor (90% decrease of acceleration total spectral power). This functional benefit was associated to normalization of electrophysiologic parameters (short-interval intracortical inhibition and cortical silent period duration). Moreover, when stimulating PMC during two daily sessions, improvement of the tremor was longer than one day stimulation and this benefit was associated with functional improvement. CONCLUSIONS This study shows that 1 Hz rTMS over premotor cortex can improve cortical tremor. SIGNIFICANCE These results raise the interest of the motor cortical stimulation as a possible therapeutic target for treatment of action tremor.
Collapse
Affiliation(s)
- E Houdayer
- Departement de Neurophysiologie Clinique, Hôpital Roger Salengro, Centre Hospitalier Régional Universitaire, EA 2683, CHRU 59037 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Pfütze M, Reis J, Haag A, John D, Hattemer K, Oertel WH, Rosenow F, Hamer HM. Lack of differences of motorcortical excitability in the morning as compared to the evening in juvenile myoclonic epilepsy—A study using transcranial magnetic stimulation. Epilepsy Res 2007; 74:239-42. [PMID: 17448635 DOI: 10.1016/j.eplepsyres.2007.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 03/05/2007] [Accepted: 03/18/2007] [Indexed: 11/19/2022]
Abstract
We used transcranial magnetic stimulation (TMS) in patients with juvenile myoclonic epilepsy (JME) and healthy controls to characterise motorcortical excitability in the morning as compared to the evening. Intra- and interindividual comparisons in JME-patients and controls showed no significant differences of any TMS parameter. The expected rise of the resting motor thresholds (RMT) in JME-patients taking anticonvulsants could not be detected which may indicate a decreased RMT in JME-patients.
Collapse
Affiliation(s)
- Martin Pfütze
- Interdisciplinary Epilepsy Center, Department of Neurology, Philipps-University Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kamida T, Fujiki M, Baba H, Ono T, Abe T, Kobayashi H. The relationship between paired pulse magnetic MEP and surgical prognosis in patients with intractable epilepsy. Seizure 2006; 16:113-9. [PMID: 17188003 DOI: 10.1016/j.seizure.2006.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 04/24/2006] [Accepted: 10/31/2006] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To assess whether paired pulse magnetic motor evoked potential (MEP) can predict surgical prognosis in patients with intractable epilepsy. METHODS MEP of the unilateral hand muscles were recorded following paired pulse transcranial magnetic stimulation (TMS) of the motor cortex. The interstimulus intervals of paired stimulation were 1-16 ms with a conditioning stimulus that was 90% active motor threshold. Subjects were six patients with temporal lobe epilepsy (TLE) scheduled for anterior temporal lobectomy and three patients with myoclonic or head-drop seizures scheduled for anterior corpus callosotomy, resulting in the unilateralization of epileptic discharges. The hemisphere showing unilateral discharges was defined as the affected hemisphere. The intracortical inhibition and facilitation curve was drawn based on MEP before and after surgery and the relationship between MEP and surgical prognosis was investigated. RESULTS In five patients with TLE showing class I surgical results (Engel's classification), the affected hemisphere showing cortical hyperexcitability preoperatively was almost normalized after surgery. However, in a patient with class III, the unaffected hemisphere showed cortical hyperexcitability before and after surgery. In the callosotomy group, two patients with excellent outcomes showed the same results as TLE group with class I. CONCLUSIONS Paired pulse magnetic MEP may provide predictive value in terms of surgical outcome in those patients with intractable epilepsy.
Collapse
Affiliation(s)
- T Kamida
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The neural dysfunction at the origin of myoclonus may locate at various anatomical levels within the central nervous system, including the motor cortices. Transcranial magnetic stimulation (TMS) can be used to assess the balance between inhibitory and excitatory processes involved in the regulation of motor cortex activity and thereby, may be of value to determine the pathophysiological mechanisms of myoclonus. Using paired-pulse paradigms with various interstimulus intervals, TMS studies showed that intracortical inhibition (ICI) was reduced in progressive myoclonic epilepsy (PME). In contrast, ICI was decreased only for short interstimulus intervals in patients with juvenile myoclonic epilepsy (JME). Transcallosal inhibition and sensorimotor integration were also both altered in PME but not in JME. Actually, the loss of inhibitory regulation within the central nervous system might represent an intrinsic mechanism of myoclonus, whether of epileptic origin or not. Finally, the other TMS parameters of excitability (motor threshold, silent period, intracortical facilitation) were found normal in most cases of myoclonus. According to these observations, it was quite conceivable that the application of repetitive trains of TMS (rTMS) at inhibitory low-frequency (around 1 Hz) might be able to relieve myoclonus by restoring ICI. A few reported cases illustrate the efficacy of low-frequency rTMS to alleviate myoclonic symptoms. Therapeutic-like perspectives are opened for rTMS in these forms of myoclonus that are related to motor cortical hyperexcitability secondary to the loss of ICI.
Collapse
Affiliation(s)
- J-P Lefaucheur
- Service de physiologie, explorations fonctionnelles, hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, 51, avenue du Marechal-Lattre-de-Tassigny, 94010 Créteil, France.
| |
Collapse
|
31
|
Manganotti P, Bongiovanni LG, Fuggetta G, Zanette G, Fiaschi A. Effects of sleep deprivation on cortical excitability in patients affected by juvenile myoclonic epilepsy: a combined transcranial magnetic stimulation and EEG study. J Neurol Neurosurg Psychiatry 2006; 77:56-60. [PMID: 16361593 PMCID: PMC2117394 DOI: 10.1136/jnnp.2004.041137] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of sleep deprivation on corticospinal excitability in patients affected by juvenile myoclonic epilepsy (JME) using different transcranial magnetic stimulation (TMS) parameters. METHODS Ten patients with JME and 10 normal subjects underwent partial sleep deprivation. Motor threshold (MT), motor evoked potential amplitude (MEP), and silent period (SP) were recorded from the thenar eminence (TE) muscles. Short latency intracortical inhibition (SICI) and short latency intracortical facilitation (SICF) were studied using paired magnetic stimulation. TMS was performed before and after sleep deprivation; EEG and TMS were performed simultaneously. RESULTS In patients with JME, sleep deprivation induced a significant decrease in SICI and an increase in SICF, which was associated with increased paroxysmal activity. A significant decrease in the MT was observed. No significant changes in any TMS parameters were noted in normal subjects after sleep deprivation. The F wave was unchanged by sleep deprivation in both control subjects and in patients with JME. CONCLUSIONS In patients with JME, sleep deprivation produces increases in corticospinal excitability in motor areas as measured by different TMS parameters.
Collapse
Affiliation(s)
- P Manganotti
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Neurologia Riabilitativa, Policlinico Borgo Roma, Via delle Menegone, 37134 Verona, Italy.
| | | | | | | | | |
Collapse
|