1
|
Ghotbeddin Z, Badripour N, Amini-Khoei H, Basir Z, Balali-dehkordi S. Proinflammatory factors inhibition and fish oil treatment: A promising therapy for neonatal seizures. IBRO Neurosci Rep 2024; 17:337-346. [PMID: 39483191 PMCID: PMC11525464 DOI: 10.1016/j.ibneur.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Brain injury is one of the most important causes of infant mortality and chronic neurological disabilities. Hypoxia is an acute brain injury which led to various cognitive, behavioral, and memory disorders throughout life. Previous studies reported neuroprotective possibilities for fish oil (FO) in brain-injured situations. In this study, we evaluated the effect of the FO diet during the lactation period on seizure activity, behavioral performance, histomorphometry, and inflammatory changes in the brains of hypoxia rats. Male Wistar rats were randomly divided in to 4 groups: Sham (intact rats), hypoxia, FO and FO+hypoxia groups. Hypoxia was induced by keeping neonate rats at PND12 in a hypoxic chamber (7 % oxygen and 93 % nitrogen intensity) for 15 minutes. In the FO groups, rats received oral FO (1 ml/day) for 12 days during the lactation period. Seizure activity was assessed by measuring the number of tonic-clonic seizures and seizure thresholds. Novel object recognition tests (NORT), rotarod, and open field tests were used to measure behavioral performances. A Histological study was performed to evaluate histomorphometric changes in the hippocampus and cerebellum. The gene expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) was measured using RT-PCR. Findings showed that the number of tonic-clonic seizures, atrophy, and cell death in the hippocampus and cerebellum, the gene expression of TNF-α and IL-1β in the hippocampus, and behavioral disorders were significantly increased in the hypoxia rats compared to the sham group. Administration of FO in the hypoxia groups significantly decreased the gene expression of TNF-α and IL-1β, the number of tonic-clonic seizures, and neuronal cell death in the hippocampus and cerebellum compared to the hypoxia groups. Furthermore, it can improve behavioral tasks and cognitions.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Badripour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Basir
- Department of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shima Balali-dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Hu Y, Qu C, Zou Y, Liu X, Zhang C, Yang B. NBQX mediates ventricular fibrillation susceptibility in rat models of anxiety via the Nrf2/HO-1 pathway. Heliyon 2024; 10:e37358. [PMID: 39296140 PMCID: PMC11408043 DOI: 10.1016/j.heliyon.2024.e37358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Anxiety disorder (AD) is a common mental disorder related to cardiovascular disease morbidity. Oxidative stress plays a crucial role in the anxiety state and can lead to cardiac remodeling. Over-activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in cardiomyocytes and neurons can cause oxidative stress. Additionally, the AMPAR inhibitor-2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX) plays an important role in ameliorating oxidative stress. This study aimed to explore the anti-arrhythmic effects of NBQX in a rat model of anxiety. Methods The AD model was induced using empty bottle stimulation. Male Sprague Dawley rats were randomly divided into four groups: control + saline, control + NBQX, AD + saline, and AD + NBQX. Open field test was conducted to measure anxiety-like behavior. Electrophysiological experiments, histological analysis, biochemical detection and molecular biology were performed to verify the effects of NBQX on the amelioration of electrical remodeling and structural remodeling. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor (ML385) was used in vitro to demonstrate the signaling pathway. Results Oxidative stress levels increased with AMPAR over-activation in AD rats, leading to heightened vulnerability to ventricular fibrillation (VF). NBQX reverses anxiety and VF susceptibility. Our results showed that NBQX activated the Nrf2/heme oxygenase-1 (HO-1) pathway, leading to a decline in oxidative stress levels. Connexin 43 and ion channel expression was upregulated. NBQX treatment attenuated fibrosis and apoptosis. This effect was diminished by ML385 treatment in vitro. Conclusion NBQX can alleviate VF susceptibility in rat models of anxiety by alleviating electrical remodeling, structural remodeling via regulating the Nrf2/HO-1 pathway to some extent.
Collapse
Affiliation(s)
- Yiqian Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
3
|
Witherspoon E, Zuczek N, Williams G, Bernstein B, Ghosh A, Culjat M, Kaushal S, Forcelli PA. A single exposure to brivaracetam or perampanel does not cause cell death in neonatal rats. Front Pediatr 2024; 12:1441891. [PMID: 39350791 PMCID: PMC11440516 DOI: 10.3389/fped.2024.1441891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Exposure to a range of anti-seizure medications (ASMs) during early brain development adversely impacts neurodevelopmental outcomes in both animal models and in clinical studies. Many ASMs, including phenobarbital, phenytoin, valproate (VPA), and benzodiazepines, are associated with acute neurotoxicity (cell death), impaired synaptic development, and long-term behavioral changes following gestational or neonatal exposure in animals. This is mirrored in clinical studies which show lasting neurodevelopmental deficits following early-life or gestational exposure to these drugs. Brivaracetam (BRV) and perampanel (PER) are two newer generation anti-seizure medications and are of interest based on their mechanisms of action (SV2A modulator, AMPA antagonist, respectively), as other drugs with these mechanisms of action do not trigger acute neurotoxicity. Both BRV and PER show anti-seizure efficacy in developing animals, but potential neurotoxicity of these drugs is unexplored. Methods To address this gap, we treated postnatal day (P)7 Sprague-Dawley rats with BRV (20, 40, 80 mg/kg) and PER (0.1, 0.9, 2.7 mg/kg), and assessed the induction of cell death across a range of vulnerable brain regions 24 h after exposure. Cell death was assessed using pathogreen staining. Results In each of the regions examined (dorsal striatum, nucleus accumbens, motor cortex, cingulate cortex, lateral thalamus, septum, hippocampus), VPA, which served as a positive control, significantly increased cell death as measured by the numer of pathogreen positive cells. By contrast, neither BRV nor PER increased the number of pathogreen positive cells in any region examined. Discussion Our results suggest that BRV and PER may have a positive safety profile-at least with respect to acute induction of cell death - and therefore may offer a safer option for the treatment of early life seizures.
Collapse
Affiliation(s)
- Eric Witherspoon
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Nicholas Zuczek
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Gabrielle Williams
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Briana Bernstein
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Marko Culjat
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Suhasini Kaushal
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
4
|
Marques KL, Rodrigues V, Balduci CTN, Montes GC, Barradas PC, Cunha-Rodrigues MC. Emerging therapeutic strategies in hypoxic-ischemic encephalopathy: a focus on cognitive outcomes. Front Pharmacol 2024; 15:1347529. [PMID: 38469401 PMCID: PMC10925695 DOI: 10.3389/fphar.2024.1347529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Perinatal hypoxia-ischemia represents a significant risk to CNS development, leading to high mortality rates, diverse damages, and persistent neurological deficits. Despite advances in neonatal medicine in recent decades, the incidence of HIE remains substantial. Motor deficits can manifest early, while cognitive impairments may be diagnosed later, emphasizing the need for extended follow-up. This review aims to explore potential candidates for therapeutic interventions for hypoxic-ischemic encephalopathy (HIE), with a focus on cognitive deficits. We searched randomized clinical trials (RCT) that tested drug treatments for HIE and evaluated cognitive outcomes. The results included studies on erythropoietin, melatonin, magnesium sulfate, topiramate, and a combination of vitamin C and ibuprofen. Although there are several indications of the efficacy of these drugs among animal models, considering neuroprotective properties, the RCTs failed to provide complete effectiveness in the context of cognitive impairments derived from HIE. More robust RCTs are still needed to advance our knowledge and to establish standardized treatments for HIE.
Collapse
Affiliation(s)
- Kethely L. Marques
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Rodrigues
- Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassiana T. N. Balduci
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rare Diseases Sales Force, Daiichi Sankyo Brazil, São Paulo, Brazil
| | - Guilherme C. Montes
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta C. Cunha-Rodrigues
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Xing B, Barbour AJ, Vithayathil J, Li X, Dutko S, Fawcett-Patel J, Lancaster E, Talos DM, Jensen FE. Reversible synaptic adaptations in a subpopulation of murine hippocampal neurons following early-life seizures. J Clin Invest 2024; 134:e175167. [PMID: 38227384 PMCID: PMC10904056 DOI: 10.1172/jci175167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Early-life seizures (ELSs) can cause permanent cognitive deficits and network hyperexcitability, but it is unclear whether ELSs induce persistent changes in specific neuronal populations and whether these changes can be targeted to mitigate network dysfunction. We used the targeted recombination of activated populations (TRAP) approach to genetically label neurons activated by kainate-induced ELSs in immature mice. The ELS-TRAPed neurons were mainly found in hippocampal CA1, remained uniquely susceptible to reactivation by later-life seizures, and displayed sustained enhancement in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated (AMPAR-mediated) excitatory synaptic transmission and inward rectification. ELS-TRAPed neurons, but not non-TRAPed surrounding neurons, exhibited enduring decreases in Gria2 mRNA, responsible for encoding the GluA2 subunit of the AMPARs. This was paralleled by decreased synaptic GluA2 protein expression and heightened phosphorylated GluA2 at Ser880 in dendrites, indicative of GluA2 internalization. Consistent with increased GluA2-lacking AMPARs, ELS-TRAPed neurons showed premature silent synapse depletion, impaired long-term potentiation, and impaired long-term depression. In vivo postseizure treatment with IEM-1460, an inhibitor of GluA2-lacking AMPARs, markedly mitigated ELS-induced changes in TRAPed neurons. These findings show that enduring modifications of AMPARs occur in a subpopulation of ELS-activated neurons, contributing to synaptic dysplasticity and network hyperexcitability, but are reversible with early IEM-1460 intervention.
Collapse
|
6
|
Roberts NS, Handy MJ, Ito Y, Hashimoto K, Jensen FE, Talos DM. Anti-seizure efficacy of perampanel in two established rodent models of early-life epilepsy. Epilepsy Behav 2023; 143:109194. [PMID: 37119576 DOI: 10.1016/j.yebeh.2023.109194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
Early-life seizures can be refractory to conventional antiseizure medications (ASMs) and can also result in chronic epilepsy and long-term behavioral and cognitive deficits. Treatments targeting age-specific mechanisms contributing to epilepsy would be of clinical benefit. One such target is the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subtype of excitatory glutamate receptor, which is upregulated in the developing brain. Perampanel is a non-competitive, selective AMPAR antagonist that is FDA-approved for focal onset seizures (FOS) or primary generalized tonic-clonic seizures (PGTC) in children and adults. However, the efficacy of perampanel treatment in epilepsy patients younger than 4 years has been less documented. We thus tested the efficacy of perampanel in two early-life seizure models: (1) a rat model of hypoxia-induced neonatal seizures and (2) a mouse model of Dravet syndrome with hyperthermia-induced seizures. Pretreatment with perampanel conferred dose-dependent protection against early-life seizures in both experimental models. These findings suggest that AMPAR-mediated hyperexcitability could be involved in the pathophysiology of early-life seizures, which may be amenable to treatment with perampanel.
Collapse
Affiliation(s)
- Nicholas S Roberts
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus J Handy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshimasa Ito
- Formerly: Neurology Business Group, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Keisuke Hashimoto
- Deep Human Biology Learning, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Hajipour S, Khombi Shooshtari M, Farbood Y, Ali Mard S, Sarkaki A, Moradi Chameh H, Sistani Karampour N, Ghafouri S. Fingolimod administration following hypoxia induced neonatal seizure can restore impaired long-term potentiation and memory performance in adult rats. Neuroscience 2023; 519:107-119. [PMID: 36990271 DOI: 10.1016/j.neuroscience.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Neonatal seizures commonly caused by hypoxia can lead to long-term neurological outcomes. Early inflammation plays an important role in the pathology of these outcomes. Therefore, in the current study, we explored the long-term effects of Fingolimod (FTY720), an analog of sphingosine and potentsphingosine 1-phosphate(S1P) receptors modulator, as an anti-inflammatory and neuroprotective agent in attenuating anxiety, memory impairment, and possible alterations in gene expression of hippocampal inhibitory and excitatory receptors following hypoxia-induced neonatal seizure (HINS). Seizure was induced in 24 male and female pups (6 in each experimental group) at postnatal day 10 (P10) by premixed gas (5% oxygen/ 95% nitrogen) in a hypoxic chamber for 15 minutes. Sixty minutes after the onset of hypoxia, FTY720 (0.3 mg/kg) or saline (100 µl) was administered for 12 days (from P10 up to P21). Anxiety-like behavior and hippocampal memory function were assessed at P90 by elevated plus maze (EPM) and novel object recognition (NOR), respectively. Long-term potentiation (LTP) was recorded from hippocampal dentate gyrus region (DG) following stimulation of perforant pathway (PP). In addition, the hippocampal concentration of superoxide dismutase activity (SOD), malondialdehyde (MDA), and thiol as indices of oxidative stress were evaluated. Finally, the gene expression of NR2A subunit of N-Methyl-D-aspartic acid (NMDA) receptor, GluR2 subunit of (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA receptor and γ2 subunit of γ-Aminobutyric acid (GABAA) receptor were assessed at P90 by the quantitative real-time PCR. FTY720 significantly reduced later-life anxiety-like behavior, ameliorated object recognition memory and increased the amplitude and slope of the field excitatory postsynaptic potential (fEPSP) in the rats following HINS. These effects were associated with restoration of the hippocampal thiol content to the normal values and the regulatory role of FTY720 in the expression of hippocampal GABA and glutamate receptors subunits. In conclusion, FTY720 could restore the dysregulated gene expression of excitatory and inhibitory receptors. It also increased the reduced hippocampal thiol content, which was accompanied with attenuation of HINS-induced anxiety, reduced the impaired hippocampal related memory, and prevented hippocampal LTP deficits in later life following HINS.
Collapse
|
8
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Molloy EJ, El-Dib M, Juul SE, Benders M, Gonzalez F, Bearer C, Wu YW, Robertson NJ, Hurley T, Branagan A, Michael Cotten C, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Bonifacio S, Soul JS, Gunn AJ. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2022:10.1038/s41390-022-02295-2. [PMID: 36195634 PMCID: PMC10070589 DOI: 10.1038/s41390-022-02295-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland. .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland. .,Neonatology, CHI at Crumlin, Dublin, Ireland. .,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Manon Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | | | - Sidhartha Tan
- Pediatrics, Division of Neonatology, Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, 12267, USA.,Pediatrics, Division of Neonatology, Central Michigan University, Mount Pleasant, MI, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK.,Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
10
|
Volpe JJ. Commentary - Early discontinuation of antiseizure medication in neonatal seizures - Proceed with caution. J Neonatal Perinatal Med 2021; 15:203-207. [PMID: 34459421 PMCID: PMC9108580 DOI: 10.3233/npm-210849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Jang S, Yang E, Kim D, Kim H, Kim E. Clmp Regulates AMPA and Kainate Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in Mice. Front Synaptic Neurosci 2021; 12:567075. [PMID: 33408624 PMCID: PMC7779639 DOI: 10.3389/fnsyn.2020.567075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 12/05/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear. Here we report that Clmp, a homophilic adhesion molecule of the Ig domain superfamily that is abundantly expressed in the brain, reaches peak expression at a neonatal stage (week 1) and associates with subunits of AMPA receptors (AMPARs) and kainate receptors (KARs). Clmp deletion in mice increased the frequency and amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) and the frequency, amplitude, and decay time constant of KAR-mediated mEPSCs in hippocampal CA3 neurons. Clmp deletion had minimal impacts on evoked excitatory synaptic currents at mossy fiber-CA3 synapses but increased extrasynaptic KAR, but not AMPAR, currents, suggesting that Clmp distinctly inhibits AMPAR and KAR responses. Behaviorally, Clmp deletion enhanced novel object recognition and susceptibility to kainate-induced seizures, without affecting contextual or auditory cued fear conditioning or pattern completion-based contextual fear conditioning. These results suggest that Clmp negatively regulates hippocampal excitatory synapse development and AMPAR and KAR responses in the neonatal hippocampal CA3 as well as object recognition and kainate seizure susceptibility in mice.
Collapse
Affiliation(s)
- Seil Jang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Doyoun Kim
- Center for Drug Discovery Platform Research, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
12
|
Inhibitory effect of anti-seizure medications on ionotropic glutamate receptors: special focus on AMPA receptor subunits. Epilepsy Res 2020; 167:106452. [DOI: 10.1016/j.eplepsyres.2020.106452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 01/11/2023]
|
13
|
Huebschman JL, Hodges SL, Reynolds CD, Nolan SO, Lugo JN. A single episode of early-life status epilepticus impacts neonatal ultrasonic vocalization behavior in the Fmr1 knockout mouse. Epilepsy Behav 2020; 111:107279. [PMID: 32693376 PMCID: PMC7541794 DOI: 10.1016/j.yebeh.2020.107279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a trinucleotide (CGG) expansion mutation in the Fmr1 gene located on the X chromosome. It is characterized by hyperactivity, increased anxiety, repetitive-stereotyped behaviors, and impaired language development. Many children diagnosed with FXS also experience seizures during their lifetime. However, the underlying etiology of the relationship between FXS and epilepsy is not fully understood. Ultrasonic vocalizations (UVs) are one tool that may be used to measure early behavioral changes in mouse pups. In the present study, neonatal UVs were analyzed as a measure of communicative behavior in a mouse model of FXS, both with and without early-life seizures (ELSs). On postnatal day (PD) 10, status epilepticus (SE) was induced via intraperitoneal injections of 0.5% kainic acid (2.0 mg/kg) in male Fmr1 knockout (KO) and wild-type (WT) mice. On PD 12, all pups were temporarily isolated from their dam and UVs were recorded. Significant alterations were found in both spectral and temporal measures across genotype and seizure groups. Early-life seizure experience resulted in a significant increase in the quantity of UVs only in WT animals (p < 0.05). We also found that while there was no difference between genotypes in the total number of vocalizations made, calls produced by Fmr1 KO mice were significantly shorter and had a higher peak frequency compared with WT mice. Overall, these findings support the use of vocalization behavior as an early phenotypic marker and highlight the importance of utilizing double-hit models to better understand comorbid disorders.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
14
|
Dexamethasone after early-life seizures attenuates increased susceptibility to seizures, seizure-induced microglia activation and neuronal injury later in life. Neurosci Lett 2020; 728:134953. [DOI: 10.1016/j.neulet.2020.134953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
|
15
|
Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res 2019; 157:106193. [PMID: 31520894 PMCID: PMC6823160 DOI: 10.1016/j.eplepsyres.2019.106193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and a significant genetic contributor to Autism spectrum disorder. In addition to autistic-like phenotypes, individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how a single early-life seizure superimposed on a genetic condition impacts the autistic-like behavioral phenotype of the mouse. We induced status epilepticus (SE) on postnatal day (PD) 10 in Fmr1 wild type (WT) and knockout (KO) mice. We then tested the mice in a battery of behavioral tests during adulthood (PD90) to examine the long-term impact of an early-life seizure. Our findings replicated prior work that reported a single instance of SE results in behavioral deficits, including increases in repetitive behavior, enhanced hippocampal-dependent learning, and reduced sociability and prepulse inhibition (p < 0.05). We also observed genotypic differences characteristic of the FXS phenotype in Fmr1 KO mice, such as enhanced prepulse inhibition and repetitive behavior, hyperactivity, and reduced startle responses (p < 0.05). Superimposing a seizure on deletion of Fmr1 significantly impacted repetitive behavior in a nosepoke task. Specifically, a single early-life seizure increased consecutive nose poking behavior in the task in WT mice (p < 0.05), yet seizures did not exacerbate the elevated stereotypy observed in Fmr1 KO mice (p > 0.05). Overall, these findings help to elucidate how seizures in a critical period of development can impact long-term behavioral manifestations caused by underlying gene mutations in Fmr1. Utilizing double-hit models, such as superimposing seizures on the Fmr1 mutation, can help to enhance our understanding of comorbidities in disease models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth TX, 76107, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
16
|
Medlej Y, Salah H, Wadi L, Saad S, Bashir B, Allam J, Atoui Z, Darwish N, Karnib N, Darwish H, Kobeissy F, Wang KKW, Hamade E, Obeid M. Lestaurtinib (CEP-701) modulates the effects of early life hypoxic seizures on cognitive and emotional behaviors in immature rats. Epilepsy Behav 2019; 92:332-340. [PMID: 30769278 DOI: 10.1016/j.yebeh.2019.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/30/2022]
Abstract
Hypoxic encephalopathy of the newborn is a major cause of long-term neurological sequelae. We have previously shown that CEP-701 (lestaurtinib), a drug with an established safety profile in children, attenuates short-term hyperexcitability and tropomyosin-related kinase B (TrkB) receptor activation in a well-established rat model of early life hypoxic seizures (HS). Here, we investigated the potential long-term neuroprotective effects of a post-HS transient CEP-701 treatment. Following exposure to global hypoxia, 10 day old male Sprague-Dawley pups received CEP-701 or its vehicle and were sequentially subjected to the light-dark box test (LDT), forced swim test (FST), open field test (OFT), Morris water maze (MWM), and the modified active avoidance (MAAV) test between postnatal days 24 and 44 (P24-44). Spontaneous seizure activity was assessed by epidural cortical electroencephalography (EEG) between P50 and 100. Neuronal density and glial fibrillary acidic protein (GFAP) levels were evaluated on histological sections in the hippocampus, amygdala, and prefrontal cortex at P100. Vehicle-treated hypoxic rats exhibited significantly increased immobility in the FST compared with controls, and post-HS CEP-701 administration reversed this HS-induced depressive-like behavior (p < 0.05). In the MAAV test, CEP-701-treated hypoxic rats were slower at learning both context-cued and tone-signaled shock-avoidance behaviors (p < 0.05). All other behavioral outcomes were comparable, and no recurrent seizures, neuronal loss, or increase in GFAP levels were detected in any of the groups. We showed that early life HS predispose to long-lasting depressive-like behaviors, and that these are prevented by CEP-701, likely via TrkB modulation. Future mechanistically more specific studies will further investigate the potential role of TrkB signaling pathway modulation in achieving neuroprotection against neonatal HS, without causing neurodevelopmental adverse effects.
Collapse
Affiliation(s)
- Yasser Medlej
- Department of Anatomy, Cell biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Houssein Salah
- Department of Anatomy, Cell biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lara Wadi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Saad
- Faculty of Arts and Sciences, American University of Beirut, Lebanon
| | - Bashir Bashir
- Faculty of Arts and Sciences, American University of Beirut, Lebanon
| | - Jad Allam
- Faculty of Arts and Sciences, American University of Beirut, Lebanon
| | - Zahraa Atoui
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nora Darwish
- Faculty of Arts and Sciences, American University of Beirut, Lebanon
| | - Nabil Karnib
- Department of Anatomy, Cell biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Lebanon
| | - Hala Darwish
- Department of Anatomy, Cell biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Rafic Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics, Department of Emergency Medicine, Department of Chemistry, Department of Neuroscience, and Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, Department of Emergency Medicine, Department of Chemistry, Department of Neuroscience, and Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eva Hamade
- Department of Biochemistry, Faculty of Science, Lebanese University, Lebanon
| | - Makram Obeid
- Department of Anatomy, Cell biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
17
|
Rao LM, Hussain SA, Zaki T, Cho A, Chanlaw T, Garg M, Sankar R. A comparison of levetiracetam and phenobarbital for the treatment of neonatal seizures associated with hypoxic-ischemic encephalopathy. Epilepsy Behav 2018; 88:212-217. [PMID: 30296665 DOI: 10.1016/j.yebeh.2018.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/17/2018] [Accepted: 09/16/2018] [Indexed: 01/29/2023]
Abstract
PURPOSE Seizures are common in term infants with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia. Although phenobarbital (PHB) is generally considered first-line therapy, some centers have embraced third-generation antiepileptic drugs (AEDs) such as levetiracetam (LEV) given the impression of comparable efficacy and superior tolerability. We set out to compare the efficacy of PHB and LEV in a large single-center cohort. METHODS We retrospectively identified consecutive newborns with HIE who were monitored with continuous video-electroencephalogram (VEEG) for the duration of therapeutic hypothermia. After identification of seizures, infants were treated with PHB or LEV at the discretion of treating physicians. We assessed time to seizure freedom as a function of AED choice, with adjustment for HIE severity and initial seizure frequency using the Kaplan-Meier procedure and multivariate Cox proportional hazards regression. RESULTS We identified 78 infants with HIE. Among 44 (56%) patients who had VEEG-confirmed seizures, 34 became seizure-free during monitoring, and the remaining 10 died. Initial treatment with LEV, in comparison with PHB, predicted a shorter interval to seizure freedom in a univariate analysis (Hazard ratio (HR) = 2.58, P = 0.007), even after adjustment for initial seizure frequency and an unbiased ad hoc measure of HIE severity (adjusted HR = 2.57, P = 0.010). This effect was recapitulated in an analysis in which patients with treatment crossover were excluded. As expected, severity of HIE was an independent predictor of longer duration to seizure freedom (HR = 0.16, P < 0.001) and remained a significant predictor after adjustment for initial seizure burden and treatment agent. CONCLUSION Despite a relatively small sample size and retrospective design, this study suggests that LEV is a viable alternative to PHB in the treatment of neonatal seizures associated with HIE. A large-scale randomized controlled trial is needed to confirm these findings.
Collapse
Affiliation(s)
- Lekha M Rao
- Division of Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, USA
| | - Shaun A Hussain
- Division of Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, USA.
| | - Timothy Zaki
- Division of Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, USA
| | - Alexander Cho
- School of Medicine and Health Sciences, George Washington University, USA
| | - Teresa Chanlaw
- Division of Neonatology, Department of Pediatrics, UCLA Mattel Children's Hospital, USA
| | - Meena Garg
- Division of Neonatology, Department of Pediatrics, UCLA Mattel Children's Hospital, USA
| | - Raman Sankar
- Division of Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, USA; Department of Neurology, David Geffen School of Medicine at UCLA, USA
| |
Collapse
|
18
|
Shalaby HN, El-Tanbouly DM, Zaki HF. Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors. Food Chem Toxicol 2018; 118:227-234. [PMID: 29753867 DOI: 10.1016/j.fct.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023]
Abstract
Prevalence of glutamate receptor subunit 2 (GluR2)-lacking alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors is a hallmark of excitotoxicity-related neurodegenerative diseases. Topiramate (TPM) is a structurally novel anticonvulsant with a well-known modulatory effects on AMPA/kainate subtypes of glutamate receptors. The present study aimed at investigating the neuroprotective potential of TPM on 3-nitropropionic acid (3-NP)-induced striatal neurodegeneration and Huntington's disease-like symptoms. Rats were injected with 3-NP (10 mg/kg/i.p.) for 14 days. TPM (50 mg/kg/p.o.) was given once a day, 1 h before 3-NP. TPM amended 3-NP induced changes in neurobehavioral performance, striatal neurotransmitters levels and histopathological injury. 3-NP control rats showed a significant ablation in the mRNA expression of Ca2+-impermeable Glu2R subunit along with an elevation in its regulatory protein (protein interacting with C kinase-1) PICK1, an effect that was largely reversed by TPM. TPM in addition, enhanced the phosphorylation of the protein kinase B/glycogen synthase kinase-3β/cAMP response element binding protein (Akt/GSK-3β/CREB) cue. Moreover, improvement in oxidative status, suppression of caspase-3 activity and restoration of striatal BDNF were noticed following treatment with TPM. The current study revealed that TPM boosted the neuroprotective (Akt/GSK-3β/CREB) pathway by its negative modulatory effect on AMPA glutamate receptors as well as its direct antioxidant property.
Collapse
Affiliation(s)
- Heba N Shalaby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Rosenberg EC, Lippman-Bell JJ, Handy M, Soldan SS, Rakhade S, Hilario-Gomez C, Folweiler K, Jacobs L, Jensen FE. Regulation of seizure-induced MeCP2 Ser421 phosphorylation in the developing brain. Neurobiol Dis 2018; 116:120-130. [PMID: 29738885 DOI: 10.1016/j.nbd.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal seizures disrupt normal synaptic maturation and often lead to later-life epilepsy and cognitive deficits. During early life, the brain exhibits heightened synaptic plasticity, in part due to a developmental overabundance of CaV1.2 L-type voltage gated calcium (Ca2+) channels (LT-VGCCs) and Ca2+-permeable AMPARs (CP-AMPARs) lacking GluA2 subunits. We hypothesized that early-life seizures overactivate these channels, in turn dysregulating Ca2+-dependent signaling pathways including that of methyl CPG binding protein 2 (MeCP2), a transcription factor implicated in the autism spectrum disorder (ASD) Rett Syndrome. Here, we show that in vivo hypoxia-induced seizures (HS) in postnatal day (P)10 rats acutely induced phosphorylation of the neuronal-specific target of activity-dependent MeCP2 phosphorylation, S421, as well as its upstream activator CaMKII T286. We next identified mechanisms by which activity-dependent Ca2+ influx induced MeCP2 phosphorylation using in vitro cortical and hippocampal neuronal cultures at embryonic day (E)18 + 10 days in vitro (DIV). In contrast to the prevalent role of NMDARs in the adult brain, we found that both CP-AMPARs and LT-VGCCs mediated MeCP2 S421 and CaMKII T286 phosphorylation induced by kainic acid (KA) or high potassium chloride (KCl) stimulation. Furthermore, in vivo post-seizure treatment with the broad-spectrum AMPAR antagonist NBQX, the CP-AMPAR blocker IEM-1460, or the LT-VGCC antagonist nimodipine blocked seizure-induced MeCP2 phosphorylation. Collectively, these results demonstrate that early-life seizures dysregulate critical activity-dependent developmental signaling pathways, in part via CP-AMPAR and LT-VGCC activation, providing novel age-specific therapeutic targets for convergent pathways underlying epilepsy and ASDs.
Collapse
Affiliation(s)
- Evan C Rosenberg
- Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States; New York University Langone Medical Center, New York, NY 10016, United States
| | - Jocelyn J Lippman-Bell
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States; Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States; Philadelphia College of Osteopathic Medicine, Department of Biomedical Sciences, Philadelphia, PA 19131, United States
| | - Marcus Handy
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Samantha S Soldan
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Sanjay Rakhade
- Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States
| | | | - Kaitlyn Folweiler
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Leah Jacobs
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States
| | - Frances E Jensen
- Perelman School of Medicine, University of Pennsylvania, Department of Neurology, Philadelphia, PA 19104, United States; Boston Children's Hospital, Department of Neurology, Boston, MA 02115, United States.
| |
Collapse
|
20
|
Abstract
Until a decade ago, epilepsy research had focused mainly on alterations of neuronal activities and excitability. Such neurocentric emphasis has neglected the role of glia and involvement of inflammation in the pathogenesis of epilepsy. It is becoming clear that immune and inflammatory reactions do occur in the brain despite the brain's lack of conventional lymphatic drainage and graft acceptance and the presence of vascular brain barrier that tightly regulates infiltration of blood monocytes and lymphocytes. The critical roles of brain-resident immune mediators and of brain-infiltrating peripheral leukocytes are increasingly recognized. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, occur in human epilepsy as well as in experimental models of epilepsy. Immune mechanism that underlies evolution of drug-resistant epilepsy and epileptic encephalopathy represents a new target and will aid in development of novel immunotherapeutic drugs and therapies against the key constituents in immune pathways.
Collapse
Affiliation(s)
- Sookyong Koh
- 1 Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Topiramate via NMDA, AMPA/kainate, GABA A and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J Neural Transm (Vienna) 2017; 124:1369-1387. [PMID: 28795276 DOI: 10.1007/s00702-017-1771-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Chronic abuse of methylphenidate (MPH) often causes neuronal cell death. Topiramate (TPM) carries neuroprotective effects, but its exact mechanism of action remains unclear. In the present study, the role of various doses of TPM and its possible mechanisms, receptors and signaling pathways involved against MPH-induced hippocampal neurodegeneration were evaluated in vivo. Thus, domoic acid (DOM) was used as AMPA/kainate receptor agonist, bicuculline (BIC) as GABAA receptor antagonist, ketamine (KET) as NMDA receptor antagonist, yohimbine (YOH) as α2 adrenergic receptor antagonist and haloperidol (HAL) was used as dopamine D2 receptor antagonist. Open field test (OFT) was used to investigate the disturbances in motor activity. Hippocampal neurodegenerative parameters were evaluated. Protein expressions of CREB/BDNF and Akt/GSK3 signaling pathways were also evaluated. Cresyl violet staining was performed to show and confirm the changes in the shape of the cells. TPM (70 and 100 mg/kg) reduced MPH-induced rise in lipid peroxidation, oxidized form of glutathione (GSSG), IL-1β and TNF-α levels, Bax expression and motor activity disturbances. In addition, TPM treatment increased Bcl-2 expression, the level of reduced form of glutathione (GSH) and the levels and activities of superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes. TPM also inhibited MPH-induced hippocampal degeneration. Pretreatment of animals with DOM, BIC, KET and YOH inhibited TPM-induced neuroprotection and increased oxidative stress, neuroinflammation, neuroapoptosis and neurodegeneration while reducing CREB, BDNF and Akt protein expressions. Also pretreatment with DOM, BIC, KET and YOH inhibited TPM-induced decreases in GSK3. It can be concluded that the mentioned receptors by modulation of CREB/BDNF and Akt/GSK3 pathways, are involved in neuroprotection of TPM against MPH-induced neurodegeneration.
Collapse
|
22
|
Poddar R, Chen A, Winter L, Rajagopal S, Paul S. Role of AMPA receptors in homocysteine-NMDA receptor-induced crosstalk between ERK and p38 MAPK. J Neurochem 2017; 142:560-573. [PMID: 28543279 DOI: 10.1111/jnc.14078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 01/12/2023]
Abstract
Homocysteine, a metabolite of the methionine cycle has been reported to play a role in neurotoxicity through activation of N-methyl-d-aspartate receptors (NMDAR)-mediated signaling pathway. The proposed mechanisms associated with homocysteine-NMDAR-induced neurotoxicity involve a unique signaling pathway that triggers a crosstalk between extracellular signal-regulated kinase (ERK) and p38 MAPKs, where activation of p38 MAPK is downstream of and dependent on ERK MAPK. However, the molecular basis of the ERK MAPK-mediated p38 MAPK activation is not understood. This study investigates whether α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) play a role in facilitating the ERK MAPK-mediated p38 MAPK activation. Using surface biotinylation and immunoblotting approaches we show that treatment with homocysteine leads to a decrease in surface expression of GluA2-AMPAR subunit in neurons, but have no effect on the surface expression of GluA1-AMPAR subunit. Inhibition of NMDAR activation with D-AP5 or ERK MAPK phosphorylation with PD98059 attenuates homocysteine-induced decrease in surface expression of GluA2-AMPAR subunit. The decrease in surface expression of GluA2-AMPAR subunit is associated with p38 MAPK phosphorylation, which is inhibited by 1-napthyl acetyl spermine trihydrochloride (NASPM), a selective antagonist of GluA2-lacking Ca2+ -permeable AMPARs. These results suggest that homocysteine-NMDAR-mediated ERK MAPK phosphorylation leads to a decrease in surface expression of GluA2-AMPAR subunit resulting in Ca2+ influx through the GluA2-lacking Ca2+ -permeable AMPARs and p38 MAPK phosphorylation. Cell death assays further show that inhibition of AMPAR activity with 2,3-dioxo-6-nitro-1,2,3,4,tetrahydrobenzoquinoxaline-7-sulfonamide (NBQX)/6-cyano-7-nitroquinoxaline-2,3, -dione (CNQX) or GluA2-lacking Ca2+ -permeable AMPAR activity with NASPM attenuates homocysteine-induced neurotoxicity. We have identified an important mechanism involved in homocysteine-induced neurotoxicity that highlights the intermediary role of GluA2-lacking Ca2+ -permeable AMPARs in the crosstalk between ERK and p38 MAPKs.
Collapse
Affiliation(s)
- Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Alexandria Chen
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lucas Winter
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
23
|
Motaghinejad M, Motevalian M, Fatima S. Mediatory role of NMDA, AMPA/kainate, GABA A and Alpha 2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci 2017; 179:37-53. [DOI: 10.1016/j.lfs.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
|
24
|
Melatonin Alleviates the Epilepsy-Associated Impairments in Hippocampal LTP and Spatial Learning Through Rescue of Surface GluR2 Expression at Hippocampal CA1 Synapses. Neurochem Res 2017; 42:1438-1448. [PMID: 28214985 DOI: 10.1007/s11064-017-2200-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/23/2022]
Abstract
Epilepsy-associated cognitive impairment is common, and negatively impacts patients' quality of life. However, most antiepileptic drugs focus on the suppression of seizures, and fewer emphasize treatment of cognitive dysfunction. Melatonin, an indolamine synthesized primarily in the pineal grand, is reported to be neuroprotective against several central nervous system disorders. In this study, we investigated whether melatonin could reverse cognitive dysfunction in lithium-pilocarpine treated rats. Chronic treatment with melatonin (8 mg/kg daily for 15 days) after induction of status epilepticus significantly alleviated seizure severity, reduced neuronal death in the CA1 region of the hippocampus, improved spatial learning (as measured by the Morris water maze test), and reversed LTP impairments, compared to vehicle treatment. Furthermore, we found that melatonin rescued the decreased surface levels of GluR2 in the CA1 region observed in epilepsy, which might be the underlying mechanism of the neuroprotective and synapse-modulating function of melatonin. Our study provides experimental evidence for the possible clinical utility of melatonin as an adjunctive therapy to prevent epilepsy-associated cognitive impairments.
Collapse
|
25
|
Lippman-Bell JJ, Zhou C, Sun H, Feske JS, Jensen FE. Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity. Mol Cell Neurosci 2016; 76:11-20. [PMID: 27521497 DOI: 10.1016/j.mcn.2016.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+)-mediated4 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is particularly high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48h after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and that this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48h after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target.
Collapse
Affiliation(s)
- Jocelyn J Lippman-Bell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Boston Children's Hospital, Boston, MA 02114, United States; Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, United States
| | - Chengwen Zhou
- Boston Children's Hospital, Boston, MA 02114, United States
| | - Hongyu Sun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Boston Children's Hospital, Boston, MA 02114, United States
| | - Joel S Feske
- Boston Children's Hospital, Boston, MA 02114, United States
| | - Frances E Jensen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Boston Children's Hospital, Boston, MA 02114, United States.
| |
Collapse
|
26
|
Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods 2015; 260:252-60. [PMID: 26434705 DOI: 10.1016/j.jneumeth.2015.09.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
Despite greater understanding and improved management, seizures continue to be a major problem in childhood. Neonatal seizures are often refractory to conventional antiepileptic drugs, and can result in later life epilepsy and cognitive deficits, conditions for which there are no specific treatments. Hypoxic and/or ischemic encephalopathy (HIE) is the most common cause for neonatal seizures, and accounts for more than two-thirds of neonatal seizure cases. A better understanding of the cellular and molecular mechanisms is essential for identifying new therapeutic strategies that control the neonatal seizures and its cognitive consequences. This heavily relies on animal models that play a critical role in discovering novel mechanisms underlying both epileptogenesis and associated cognitive impairments. To date, a number of animal models have provided a tremendous amount of information regarding the pathophysiology of HIE-induced neonatal seizures. This review provides an overview on the most important features of the main animal models of HIE-induced seizures. In particular, we focus on the methodology of seizure induction and the characterizations of post-HIE injury consequences. These aspects of HIE-induced seizure models are discussed in the light of the suitability of these models in studying human HIE-induced seizures.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Halvor M Juul
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
28
|
Sampath D, Shmueli D, White AM, Raol YH. Flupirtine effectively prevents development of acute neonatal seizures in an animal model of global hypoxia. Neurosci Lett 2015; 607:46-51. [PMID: 26365409 DOI: 10.1016/j.neulet.2015.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/18/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
Current first-line drugs for the treatment of neonatal seizures have limited efficacy and are associated with side effects. Uncontrolled seizures may exacerbate brain injury and contribute to later-life neurological disability. Therefore, it is critical to develop a treatment for neonatal seizures that is effective and safe. In early-life, when the γ-aminobutyric acid (GABA) inhibitory system is not fully developed, potassium channels play an important role in controlling excitability. An earlier study demonstrated that flupirtine, a KCNQ potassium channel opener, is more efficacious than diazepam and phenobarbital for the treatment of chemoconvulsant-induced neonatal seizures. In newborns, seizures are most commonly associated with hypoxic-ischemic encephalopathy (HIE). Thus, in the present study, we examined the efficacy of flupirtine to treat neonatal seizures in an animal model of global hypoxia. Our results showed that flupirtine dose dependently blocks the occurrence of behavioral seizures in pups during hypoxia. Additionally, flupirtine inhibits the development of hypoxia-induced clinical seizures and associated epileptiform discharges, as well as purely electrographic (subclinical) seizures. These results suggest that flupirtine is an effective anti-seizure drug, and that further studies should be conducted to determine the time window within which it's administration can effectively treat neonatal seizures.
Collapse
Affiliation(s)
- Dayalan Sampath
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, School of Medicine, Aurora, CO 80045, United States
| | - Doron Shmueli
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, School of Medicine, Aurora, CO 80045, United States
| | - Andrew M White
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, School of Medicine, Aurora, CO 80045, United States
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado, School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
29
|
Zayachkivsky A, Lehmkuhle MJ, Ekstrand JJ, Dudek FE. Ischemic injury suppresses hypoxia-induced electrographic seizures and the background EEG in a rat model of perinatal hypoxic-ischemic encephalopathy. J Neurophysiol 2015; 114:2753-63. [PMID: 26354320 DOI: 10.1152/jn.00796.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/05/2015] [Indexed: 12/16/2022] Open
Abstract
The relationship among neonatal seizures, abnormalities of the electroencephalogram (EEG), brain injury, and long-term neurological outcome (e.g., epilepsy) remains controversial. The effects of hypoxia alone (Ha) and hypoxia-ischemia (HI) were studied in neonatal rats at postnatal day 7; both models generate EEG seizures during the 2-h hypoxia treatment, but only HI causes an infarct with severe neuronal degeneration. Single-channel, differential recordings of acute EEG seizures and background suppression were recorded with a novel miniature telemetry device during the hypoxia treatment and analyzed quantitatively. The waveforms of electrographic seizures (and their behavioral correlates) appeared virtually identical in both models and were identified as discrete events with high power in the traditional delta (0.1-4 Hz) and/or alpha (8-12 Hz) bands. Although the EEG patterns during seizures were similar in Ha- and HI-treated animals at the beginning of the hypoxic insult, Ha caused a more severe electrographic seizure profile than HI near the end. Analyses of power spectral density and seizure frequency profiles indicated that the electrographic seizures progressively increased during the 2-h Ha treatment, while HI led to a progressive decrease in the seizures with significant suppression of the EEG background. These data show that 1) the hypoxia component of these two models drives the seizures; 2) the seizures during Ha are substantially more robust than those during HI, possibly because ongoing neuronal damage blunts the electrographic activity; and 3) a progressive decrease in background EEG, rather than the presence of electrographic seizures, indicates neuronal degeneration during perinatal HI.
Collapse
Affiliation(s)
- A Zayachkivsky
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - M J Lehmkuhle
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - J J Ekstrand
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - F E Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
30
|
Rodriguez-Alvarez N, Jimenez-Mateos EM, Dunleavy M, Waddington JL, Boylan GB, Henshall DC. Effects of hypoxia-induced neonatal seizures on acute hippocampal injury and later-life seizure susceptibility and anxiety-related behavior in mice. Neurobiol Dis 2015; 83:100-14. [PMID: 26341542 DOI: 10.1016/j.nbd.2015.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/06/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022] Open
Abstract
Seizures are common during the neonatal period, often due to hypoxic-ischemic encephalopathy and may contribute to acute brain injury and the subsequent development of cognitive deficits and childhood epilepsy. Here we explored short- and long-term consequences of neonatal hypoxia-induced seizures in 7 day old C57BL/6J mice. Seizure activity, molecular markers of hypoxia and histological injury were investigated acutely after hypoxia and response to chemoconvulsants and animal behaviour was explored at adulthood. Hypoxia was induced by exposing pups to 5% oxygen for 15 min (global hypoxia). Electrographically defined seizures with behavioral correlates occurred in 95% of these animals and seizures persisted for many minutes after restitution of normoxia. There was minimal morbidity or mortality. Pre- or post-hypoxia injection of phenobarbital (50mg/kg) had limited efficacy at suppressing seizures. The hippocampus from neonatal hypoxia-seizure mice displayed increased expression of vascular endothelial growth factor and the immediate early gene c-fos, minimal histological evidence of cell injury and activation of caspase-3 in scattered neurons. Behavioral analysis of mice five weeks after hypoxia-induced seizures detected novel anxiety-related and other behaviors, while performance in a spatial memory test was similar to controls. Seizure threshold tests with kainic acid at six weeks revealed that mice previously subject to neonatal hypoxia-induced seizures developed earlier, more frequent and longer-duration seizures. This study defines a set of electro-clinical, molecular, pharmacological and behavioral consequences of hypoxia-induced seizures that indicate short- and long-term deleterious outcomes and may be a useful model to investigate the pathophysiology and treatment of neonatal seizures in humans.
Collapse
Affiliation(s)
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Dunleavy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland.
| |
Collapse
|
31
|
Dhir A, Chavda V. Pre- and post-exposure talampanel (GYKI 53773) against kainic acid seizures in neonatal rats. Pharmacol Rep 2015; 68:190-5. [PMID: 26721372 DOI: 10.1016/j.pharep.2015.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND AMPA receptors play an important role in the neurobiology of neonatal epilepsy. The present study evaluated the effect of talampanel, a potent and selective non-competitive antagonist of AMPA receptors, against kainic acid-induced continuous seizures (status epilepticus) and other behavioral abnormalities in neonatal rats. METHODS Kainic acid was administered at doses of 2 or 4mg/kg, ip to induce seizures and status epilepticus in postnatal 7 days old rat neonates in pre- and post-exposure studies, respectively. RESULTS Intraperitoneal administration of kainic acid (2 or 4mg/kg) resulted in forelimb/hind-limb scratching defined as automatism, continuous generalized tonic-clonic seizures with loss of righting reflex suggesting status epilepticus and tonic extension. Pre-exposure of talampanel (2.5-10mg/kg, ip) 30min before kainic acid did not affect the onset of kainic acid convulsions. Talampanel at 20mg/kg, ip delayed the commencement of tonic extension, but not status-induced by kainic acid. In contrast, talampanel (5 and 10mg/kg, ip) when administered 5min after kainic acid (4mg/kg, ip) postponed the onset of status epilepticus and tonic extension compared to vehicle treated group. Furthermore, talampanel (10mg/kg, ip) but not GYKI 52466 (20 or 50mg/kg, ip; a non-competitive AMPA/kainate receptor antagonist) stopped the ongoing status epilepticus when administered 10min after the administration of kainic acid. However, seizures re-occurred after 35.98±2.36min. CONCLUSION The present results suggested that talampanel is protective in kainic acid-induced neonatal status epilepticus model; however, the time of administration is a crucial factor in determining its effectiveness.
Collapse
Affiliation(s)
- Ashish Dhir
- Neuropharmacology Division, Institute of R&D, Gujarat Forensic Sciences University, Gandhinagar, India.
| | - Vishal Chavda
- Neuropharmacology Division, Institute of R&D, Gujarat Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
32
|
Jensen FE. Developmental factors in the pathogenesis of neonatal seizures. JOURNAL OF PEDIATRIC NEUROLOGY 2015; 7:5-12. [PMID: 20191097 DOI: 10.3233/jpn-2009-0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neonatal seizures are inherently different from seizures in the child and the adult. The phenotype, often exhibiting electroclinical dissociation, is unique: neonatal seizures can be refractory to antiepileptic drugs otherwise effect for older patients. Recent experimental and human-based research reveals that the mechanism of neonatal seizures, as well as their long-term sequelae on later brain development, appears to involve a large number of age-specific factors. These observations help explain the resistance of neonatal seizures to conventional therapy as well as identify potential areas of risk for later neurocognitive development. Emerging targets from this research may suggest new therapies for this unique population of patients.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, and Program in Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Chung S, Spruston N, Koh S. Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. PLoS One 2015; 10:e0119411. [PMID: 25775210 PMCID: PMC4361192 DOI: 10.1371/journal.pone.0119411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 01/30/2015] [Indexed: 12/03/2022] Open
Abstract
Kainic acid-induced status epilepticus (KA-SE) in mature rats results in the development of spontaneous recurrent seizures and a pattern of cell death resembling hippocampal sclerosis in patients with temporal lobe epilepsy. In contrast, KA-SE in young animals before postnatal day (P) 18 is less likely to cause cell death or epilepsy. To investigate whether changes in neuronal excitability occur in the subiculum after KA-SE, we examined the age-dependent effects of SE on the bursting neurons of subiculum, the major output region of the hippocampus. Patch-clamp recordings were used to monitor bursting in pyramidal neurons in the subiculum of rat hippocampal slices. Neurons were studied either one or 2-3 weeks following injection of KA or saline (control) in immature (P15) or more mature (P30) rats, which differ in their sensitivity to KA as well as the long-term sequelae of the KA-SE. A significantly greater proportion of subicular pyramidal neurons from P15 rats were strong-bursting neurons and showed increased frequency-dependent bursting compared to P30 animals. Frequency-dependent burst firing was enhanced in P30, but not in P15 rats following KA-SE. The enhancement of bursting induced by KA-SE in more mature rats suggests that the frequency-dependent limitation of repetitive burst firing, which normally occurs in the subiculum, is compromised following SE. These changes could facilitate the initiation of spontaneous recurrent seizures or their spread from the hippocampus to other parts of the brain.
Collapse
Affiliation(s)
- Sungkwon Chung
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Nelson Spruston
- Scientific Program, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - Sookyong Koh
- Neurobiology Program, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Interstrain differences of ionotropic glutamate receptor subunits in the hippocampus and induction of hippocampal sclerosis with pilocarpine in mice. J Chem Neuroanat 2015; 64-65:1-11. [PMID: 25697672 DOI: 10.1016/j.jchemneu.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 12/29/2022]
Abstract
Rodent strains used in epilepsy research have various neurological characteristics. These differences were suggested to be attributed to the diverse densities of the ionotropic glutamate receptor (iGluR) subunits. However, previous studies failed to find interstrain differences in the hippocampal receptor levels. We supposed that a detailed layer-to-layer analysis of the iGluR subunits in the hippocampus might reveal strain-dependent differences in their base lines and reactions induced by pilocarpine (PILO) between two mouse strains without documented ancestors. Levels of iGluR subunits in Balb/c and NMRI mice were compared using semiquantitative immunohistochemistry. The alterations in the neuronal circuitry were validated by neuropeptide Y (NPY) and neuronal nuclear antigen (NeuN) immunostainings. Immunohistochemistry showed interstrain laminar differences in some subunits of both the control and PILO-treated animals. The seizure-induced irreversible neuronal changes were accompanied by reduced GluA1 and GluA2 levels. Their changes were inversely correlated in the individual NMRI mice by Pearson's method. Increase in NPY immunoreactivity showed positive correlation with GluA1, and negative correlation with GluA2. The NMRI strain was susceptible to PILO-induced hippocampal sclerosis, while the Balb/c animals showed resistance. Basal levels of iGluRs differ in mouse strains, which may account for the interstrain differences in their reactions to the convulsant.
Collapse
|
35
|
In vivo effects of bumetanide at brain concentrations incompatible with NKCC1 inhibition on newborn DGC structure and spontaneous EEG seizures following hypoxia-induced neonatal seizures. Neuroscience 2014; 286:203-15. [PMID: 25463517 DOI: 10.1016/j.neuroscience.2014.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
Abstract
Neonatal seizures caused by perinatal asphyxia and hypoxic-ischemic encephalopathy can be refractory to conventional anticonvulsants. This may be due to the depolarizing effects of gamma-aminobutyric acid (GABA) achieved by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). The aim of this study is to evaluate the long-term effects of bumetanide, a NKCC1 inhibitor, on hippocampal neurogenesis and seizure susceptibility in hypoxia-induced neonatal seizure model. Wistar rats were subjected to hypoxia-induced neonatal seizures at postnatal day 10 (P10). Following acute seizures, the rats were treated with intraperitoneal injection (i.p.) of bumetanide at a dose of 0.5mg/kg for 3 weeks. In later adulthood, hypoxia-induced seizures increased the number of newborn dentate gyrus cells (DGCs), promoted mossy fiber sprouting (MFS) and reduced the apical dendritic complexity of newborn DGCs 1 month after the insults. In addition, these seizures resulted in long-lasting consequences, such as spontaneous electroencephalography (EEG) seizures, though spatial learning impairments were not seen. Bumetanide treatments significantly enhanced cell proliferation and dendritic development of newborn DGCs after neonatal seizures, accompanied by the decreased seizure activity. However, systemic administration of bumetanide resulted in much lower brain concentrations, and was incompatible with NKCC1 inhibition in blood-brain barrier (BBB)-protected brain tissue. Our results suggested that bumetanide might have long-term effects in suppressing seizure activity, and altering the neurogenesis after neonatal seizures. These effects of bumetanide may be mediated by the targets outside the BBB-protected central nerve system (CNS) or CNS-located target(s) other than NKCC1.
Collapse
|
36
|
Scorza FA, Siqueira GM, Scorza CA, Cavalheiro EA, Rodrigues AM, de Almeida ACG. Two-hit rodent seizure model: a promising new design for research in SUDEP. Epilepsy Behav 2014; 35:26-7. [PMID: 24792096 DOI: 10.1016/j.yebeh.2014.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil.
| | - Gláucio M Siqueira
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Carla A Scorza
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Esper A Cavalheiro
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo/Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, Brazil
| | - Antonio M Rodrigues
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Antonio-Carlos G de Almeida
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
37
|
van Passel L, Arif H, Hirsch LJ. Topiramate for the treatment of epilepsy and other nervous system disorders. Expert Rev Neurother 2014; 6:19-31. [PMID: 16466308 DOI: 10.1586/14737175.6.1.19] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially synthesized as an oral hypoglycemic agent, topiramate was approved for use as an anticonvulsant in 1996. Its broad spectrum efficacy in epilepsy, including as monotherapy and in children, is well established. Topiramate has also been used in the management of nonepileptic neurologic and psychiatric conditions, including migraine prophylaxis (with firmly established efficacy), obesity (with some evidence of long-term maintenance of weight loss), substance dependence, bipolar disorder and neuropathic pain, and it has been investigated as a possible neuroprotective agent. Paresthesias and cognitive side effects are the most common troublesome adverse effects. Recent trends towards lower doses may help achieve the best combination of efficacy and tolerability.
Collapse
Affiliation(s)
- Leonie van Passel
- Comprehensive Epilepsy Center, Neurological Institute, Columbia University, Box NI-135, New York, NY 10032, USA.
| | | | | |
Collapse
|
38
|
Lippman-Bell JJ, Rakhade SN, Klein PM, Obeid M, Jackson MC, Joseph A, Jensen FE. AMPA receptor antagonist NBQX attenuates later-life epileptic seizures and autistic-like social deficits following neonatal seizures. Epilepsia 2013; 54:1922-32. [PMID: 24117347 DOI: 10.1111/epi.12378] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits. METHODS Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38. KEY FINDINGS Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s). SIGNIFICANCE Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits.
Collapse
Affiliation(s)
- Jocelyn J Lippman-Bell
- Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, U.S.A; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | | | | | | | | | | | | |
Collapse
|
39
|
Gene expression profiling of a hypoxic seizure model of epilepsy suggests a role for mTOR and Wnt signaling in epileptogenesis. PLoS One 2013; 8:e74428. [PMID: 24086344 PMCID: PMC3785482 DOI: 10.1371/journal.pone.0074428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/01/2013] [Indexed: 01/09/2023] Open
Abstract
Microarray profiling was used to investigate gene expression in the hypoxic seizure model of acquired epilepsy in the rat, with the aim of characterizing functional pathways which are persistently activated or repressed during epileptogenesis. Hippocampal and cortical tissues were transcriptionally profiled over a one week period following an initial series of seizures induced by mild hypoxia at post-natal day 10 (P10), and the gene expression data was then analyzed with a focus on gene set enrichment analysis, an approach which emphasizes regulation of entire pathways rather than of individual genes. Animals were subjected to one of three conditions: a control with no hypoxia, hypoxic seizures, and hypoxic seizures followed by treatment with the AMPAR antagonist NBQX, a compound currently proposed to be a modulator of epileptogenesis. While temporal gene expression in the control samples was found to be consistent with known processes of neuronal maturation in the rat for the given time window, the hypoxic seizure response was found to be enriched for components of the PI3K/mTOR and Wnt signaling pathways, alongside gene sets representative of glutamatergic, synaptic and axonal processes, perhaps regulated as a downstream consequence of activation of these pathways. Wnt signaling components were also found enriched in the more specifically epileptogenic NBQX-responsive gene set. While activation of the mTOR pathway is consistent with its known role in epileptogenesis and strengthens the case for mTOR or PI3K pathway inhibitors as potential anti-epileptogenic drugs, investigation of the role of Wnt signaling and the effect of appropriate inhibitors might offer a parallel avenue of research toward anti-epileptogenic treatment of epilepsy.
Collapse
|
40
|
Abstract
The treatment of neonatal seizures has not changed significantly over the last 50 years despite advances in antiepileptic drug (AED) development for older children and adults. Recently new drugs have emerged some of which address age-specific challenges or mechanisms and will be discussed in this review. The loop diuretic bumetanide blocks the neuronal NKCC1 co-transporter and is thought specifically to supress seizures in the immature brain. Levetiracetam has been used in children and infants with good efficacy, an excellent safety profile, and near-ideal pharmacokinetic characteristics. Randomised controlled trials are now underway to test the efficacy of some newer AEDs for neonatal seizures. Topiramate has been shown to have neuroprotective properties in addition to its antiepileptic action and trials in babies with hypoxic-ischaemic encephalopathy are now planned. There is an urgent need to develop age-specific AEDs for preterm and term babies. These drugs must be evaluated with multicentre, collaborative trials using innovative methods and high ethical standards to overcome age-specific challenges with the ultimate aim of improving the outcome for neonates with seizures.
Collapse
|
41
|
Spagnoli C, Pavlidis E, Pisani F. Neonatal seizures therapy: we are still looking for the efficacious drug. Ital J Pediatr 2013; 39:37. [PMID: 23738960 PMCID: PMC3685550 DOI: 10.1186/1824-7288-39-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Therapeutic options currently available for neonatal seizures are still unsatisfactory both in terms of efficacy and of risk for long-term neurotoxicity, even if there is growing recognition of their potential to worsen neurodevelopmental outcome. A recent paper by Slaughter and colleagues entitled “Pharmacological treatment of neonatal seizures: a systematic review” has been published with the aim to provide a treatment algorithm, but, due to the relative paucity of clinical studies, it relies mainly on traditional antiepileptic drugs and does not distinguish between different neonatal populations, especially preterm and hypothermic neonates, who might require a dedicated approach in order to improve seizure control and reduce side effects.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neuropsychiatric Unit, Neuroscience Department, University of Parma, Parma, Italy.
| | | | | |
Collapse
|
42
|
Clark AM, Kriel RL, Leppik IE, White JR, Henry TR, Brundage RC, Cloyd JC. Intravenous topiramate: Safety and pharmacokinetics following a single dose in patients with epilepsy or migraines taking oral topiramate. Epilepsia 2013; 54:1106-11. [DOI: 10.1111/epi.12165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Anne M. Clark
- Upsher-Smith Laboratories; Minneapolis Minnesota U.S.A
| | - Robert L. Kriel
- Center for Orphan Drug Research; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Experimental and Clinical Pharmacology; College of Pharmacy; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Ilo E. Leppik
- Department of Experimental and Clinical Pharmacology; College of Pharmacy; University of Minnesota; Minneapolis Minnesota U.S.A
- MINCEP Epilepsy Care; Minneapolis Minnesota U.S.A
- Department of Neurology; University of Minnesota; Minneapolis Minnesota U.S.A
| | | | - Thomas R. Henry
- Department of Neurology; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Richard C. Brundage
- Department of Experimental and Clinical Pharmacology; College of Pharmacy; University of Minnesota; Minneapolis Minnesota U.S.A
| | - James C. Cloyd
- Center for Orphan Drug Research; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Experimental and Clinical Pharmacology; College of Pharmacy; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Neurology; University of Minnesota; Minneapolis Minnesota U.S.A
| |
Collapse
|
43
|
Glutamate receptor 1 phosphorylation at serine 831 and 845 modulates seizure susceptibility and hippocampal hyperexcitability after early life seizures. J Neurosci 2013; 32:17800-12. [PMID: 23223299 DOI: 10.1523/jneurosci.6121-11.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neonatal seizures can lead to later life epilepsy and neurobehavioral deficits, and there are no treatments to prevent these sequelae. We showed previously that hypoxia-induced seizures in a neonatal rat model induce rapid phosphorylation of serine-831 (S831) and Serine 845 (S845) sites of the AMPA receptor GluR1 subunit and later neuronal hyperexcitability and epilepsy, suggesting that seizure-induced posttranslational modifications may represent a novel therapeutic target. To unambiguously assess the contribution of these sites, we examined seizure susceptibility in wild-type mice versus transgenic knock-in mice with deficits in GluR1 S831 and S845 phosphorylation [GluR1 double-phosphomutant (GluR1 DPM) mice]. Phosphorylation of the GluR1 S831 and S845 sites was significantly increased in the hippocampus and cortex after a single episode of pentyleneterazol-induced seizures in postnatal day 7 (P7) wild-type mouse pups and that transgenic knock-in mice have a higher threshold and longer latencies to seizures. Like the rat, hypoxic seizures in P9 C57BL/6N wild-type mice resulted in transient increases in GluR1 S831 and GluR1 S845 phosphorylation in cortex and were associated with enhanced seizure susceptibility to later-life kainic-acid-induced seizures. In contrast, later-life seizure susceptibility after hypoxia-induced seizures was attenuated in GluR1 DPM mice, supporting a role for posttranslational modifications in seizure-induced network excitability. Finally, human hippocampal samples from neonatal seizure autopsy cases also showed an increase in GluR1 S831 and S845, supporting the validation of this potential therapeutic target in human tissue.
Collapse
|
44
|
Clark AM, Kriel RL, Leppik IE, Marino SE, Mishra U, Brundage RC, Cloyd JC. Intravenous topiramate: Comparison of pharmacokinetics and safety with the oral formulation in healthy volunteers. Epilepsia 2013; 54:1099-105. [DOI: 10.1111/epi.12134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Anne M. Clark
- Upsher-Smith Laboratories, Inc.; Minneapolis Minnesota U.S.A
| | - Robert L. Kriel
- Center for Orphan Drug Research; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Experimental and Clinical Pharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Ilo E. Leppik
- Department of Experimental and Clinical Pharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
- MINCEP Epilepsy Care; Minneapolis Minnesota U.S.A
- Department of Neurology; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Susan E. Marino
- Department of Experimental and Clinical Pharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
- The Center for Clinical and Cognitive Neuropharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Usha Mishra
- Center for Orphan Drug Research; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Experimental and Clinical Pharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
| | - Richard C. Brundage
- Department of Experimental and Clinical Pharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
| | - James C. Cloyd
- Center for Orphan Drug Research; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Experimental and Clinical Pharmacology; University of Minnesota; Minneapolis Minnesota U.S.A
- Department of Neurology; University of Minnesota; Minneapolis Minnesota U.S.A
| |
Collapse
|
45
|
Russo I, Bonini D, Via LL, Barlati S, Barbon A. AMPA receptor properties are modulated in the early stages following pilocarpine-induced status epilepticus. Neuromolecular Med 2013; 15:324-38. [PMID: 23494293 DOI: 10.1007/s12017-013-8221-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/08/2013] [Indexed: 01/28/2023]
Abstract
Glutamate over-activation and the consequent neuronal excitotoxicity have been identified as crucial players in brain dysfunctions such as status epilepticus (SE). Owing to the central function of 2-amino-3-(hydroxyl-5-methylisoxazole-4-yl) propionic acid receptors (AMPARs) in fast excitatory neurotransmission, these receptors have been recognized to play a prominent role in the development and generation of epileptic seizure. This study was undertaken to investigate both the early changes that affect glutamatergic neurons in the rat cerebral cortex and hippocampus and the level and channel properties of AMPARs in response to SE. The results obtained after 3 h of pilocarpine (PILO)-induced SE showed a disorganization of glutamatergic neurons in the CA3 and a thinner neuronal cell layer in the dentate gyrus (DG) region as compared with controls. A significant increase in AMPAR GluA2 protein expression, a decrease in GluA1, GluA3, and GluA4 expression, and a reduction in the phosphorylation of Ser831-GluA1 and Ser880-GluA2 were also observed. In addition, we report a downregulation of R/G editing levels and of Flip splicing isoforms, with a prominent effect on the hippocampus of PILO-treated rats. Our results suggest the presence of an attenuation of AMPARs' post-synaptic excitatory response to glutamate after PILO treatment, thus conferring neuronal protection from the excitotoxic conditions observed in the SE. This study suggests a role for AMPARs in alterations of the glutamatergic pathway during the onset and early progression of epilepsy, thus indicating additional targets for potential therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Russo
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology and National Institute of Neuroscience, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
BACKGROUND Neonatal seizures can result in chronic epilepsy and long-term behavioral and cognitive deficits. Levetiracetam (LEV), an antiepileptic drug that binds to the synaptic vesicle protein 2A (SV2A), has been increasingly used off-label for the therapy of neonatal seizures. Preclinical data regarding the acute or long-term efficacy of LEV are lacking. METHODS We tested the anticonvulsant efficacy of LEV in a rat model of hypoxia-induced neonatal seizures. In addition, we evaluated the protective effects of postnatal day (P)10 LEV treatment on later-life kainic acid (KA)-induced seizure susceptibility and seizure-induced neuronal injury. Western blot and immunohistochemistry were used to assess the developmental regulation of SV2A in the rat and human brain. RESULTS LEV pretreatment at P10 significantly decreased the cumulative duration of behavioral and electrographic seizures at both 25 and 50 mg/kg. At P40, KA-induced seizures and neuronal loss were significantly diminished in rats previously treated with LEV. LEV target SV2A is present in both neonatal rat and human brain and increases steadily to adulthood. CONCLUSION LEV suppressed acute seizures induced by perinatal hypoxia and diminished later-life seizure susceptibility and seizure-induced neuronal injury, providing evidence for disease modification. These results support consideration of a clinical trial of LEV in neonatal seizures.
Collapse
|
47
|
Learning Through Silence: Amping up Cognition After Neonatal Hypoxic Seizures Through AMPA Receptor Inhibition. Epilepsy Curr 2012; 12:167-9. [PMID: 23118597 DOI: 10.5698/1535-7511-12.5.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Zayachkivsky A, Lehmkuhle MJ, Fisher JH, Ekstrand JJ, Dudek FE. Recording EEG in immature rats with a novel miniature telemetry system. J Neurophysiol 2012; 109:900-11. [PMID: 23114207 DOI: 10.1152/jn.00593.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serial EEG recordings from immature rat pups are extremely difficult to obtain but important for analyzing animal models of neonatal seizures and other pediatric neurological conditions as well as normal physiology. In this report, we describe the features and applications of a novel miniature telemetry system designed to record EEG in rat pups as young as postnatal day 6 (P6). First, we have recorded electrographic seizure activity in two animal models of neonatal seizures, hypoxia- and kainate-induced seizures at P7. Second, we describe a viable approach for long-term continuous EEG monitoring of naturally reared rat pups implanted with EEG at P6. Third, we have used serial EEG recordings to record age-dependent changes in the background EEG signal as the animals matured from P7 to P11. The important advantages of using miniature wireless EEG technology are: 1) minimally invasive surgical implantation; 2) a device form-factor that is compatible with housing of rat pups with the dam and littermates; 3) serial recordings of EEG activity; and 4) low power consumption of the unit, theoretically allowing continuous monitoring for up to 2 yr without surgical reimplantation. The miniature EEG telemetry system provides a technical advance that allows researchers to record continuous and serial EEG recordings in neonatal rodent models of human neurological disorders, study the progression of the disease, and then assess possible therapies using quantitative EEG as an outcome measure. This new technical approach should improve animal models of human conditions that rely on EEG monitoring for diagnosis and therapy.
Collapse
Affiliation(s)
- A Zayachkivsky
- Dept. of Physiology, Univ. of Utah School of Medicine, Salt Lake City, UT 84108-6500, USA
| | | | | | | | | |
Collapse
|
49
|
Filippi L, Fiorini P, Daniotti M, Catarzi S, Savelli S, Fonda C, Bartalena L, Boldrini A, Giampietri M, Scaramuzzo R, Papoff P, Del Balzo F, Spalice A, la Marca G, Malvagia S, Della Bona ML, Donzelli G, Tinelli F, Cioni G, Pisano T, Falchi M, Guerrini R. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr 2012; 12:144. [PMID: 22950861 PMCID: PMC3478965 DOI: 10.1186/1471-2431-12-144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/31/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2-3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment. METHODS/DESIGN Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests. DISCUSSION This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns.
Collapse
Affiliation(s)
- Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Feto-Neonatal Department, A. Meyer University Children's Hospital, Viale Pieraccini, 24, I-50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Da Silva AM, Willmore LJ. Posttraumatic epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2012; 108:585-99. [PMID: 22939055 DOI: 10.1016/b978-0-444-52899-5.00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- A Martins Da Silva
- Hospital Geral de Santo António and Biomedical Science Institute, University of Porto, Porto, Portugal
| | | |
Collapse
|