1
|
Lev A, Pischedda A. Male size does not affect the strength of male mate choice for high-quality females in Drosophila melanogaster. J Evol Biol 2023; 36:1255-1265. [PMID: 37534751 DOI: 10.1111/jeb.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Theory predicts that the strength of male mate choice should vary depending on male quality when higher-quality males receive greater fitness benefits from being choosy. This pattern extends to differences in male body size, with larger males often having stronger pre- and post-copulatory preferences than smaller males. We sought to determine whether large males and small males differ in the strength (or direction) of their preference for large, high-fecundity females using the fruit fly, Drosophila melanogaster. We measured male courtship preferences and mating duration to show that male body size had no impact on the strength of male mate choice; all males, regardless of their size, had equally strong preferences for large females. To understand the selective pressures shaping male mate choice in males of different sizes, we also measured the fitness benefits associated with preferring large females for both large and small males. Male body size did not affect the benefits that males received: large and small males were equally successful at mating with large females, received the same direct fitness benefits from mating with large females, and showed similar competitive fertilization success with large females. These findings provide insight into why the strength of male mate choice was not affected by male body size in this system. Our study highlights the importance of evaluating the benefits and costs of male mate choice across multiple males to predict when differences in male mate choice should occur.
Collapse
Affiliation(s)
- Avigayil Lev
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Alison Pischedda
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Laugen AT, Hosken DJ, Reinhold K, Schwarzenbach GA, Hoeck PEA, Bussière LF, Blanckenhorn WU, Lüpold S. Sperm competition in yellow dung flies: No consistent effect of sperm size. J Evol Biol 2022; 35:1309-1318. [PMID: 35972882 DOI: 10.1111/jeb.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.
Collapse
Affiliation(s)
- Ane T Laugen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - David J Hosken
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Klaus Reinhold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Evolutionsbiologie, Universität Bielefeld, Bielefeld, Germany
| | - Gioia A Schwarzenbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Paquita E A Hoeck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Biology and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
3
|
Dekker ML, van Son LM, Leon-Kloosterziel KM, Hagmayer A, Furness AI, van Leeuwen JL, Pollux BJA. Multiple paternity in superfetatious live-bearing fishes. J Evol Biol 2022; 35:948-961. [PMID: 35612319 DOI: 10.1111/jeb.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
Superfetation, the ability to carry several overlapping broods at different developmental stages, has evolved independently multiple times within the live-bearing fish family Poeciliidae. Even though superfetation is widespread among poeciliids, its evolutionary advantages remain unclear. Theory predicts that superfetation should increase polyandry by increasing the probability that temporally overlapping broods are fertilized by different fathers. Here, we test this key prediction in two poeciliid species that each carry two temporally overlapping broods: Poeciliopsis retropinna and P. turrubarensis. We collected 25 females per species from freshwater streams in South-Eastern Costa Rica and assessed multiple paternity by genotyping all their embryos (420 embryos for P. retropinna; 788 embryos for P. turrubarensis) using existing and newly developed microsatellite markers. We observed a high frequency of unique sires in the simultaneous, temporally overlapping broods in P. retropinna (in 56% of the pregnant females) and P. turrubarensis (79%). We found that the mean number of sires within females was higher than the number of sires within the separate broods (2.92 sires within mothers vs. 2.36 within separate broods in P. retropinna; and 3.40 vs 2.56 in P. turrubarensis). We further observed that there were significant differences in the proportion of offspring sired by each male in 42% of pregnant female P. retropinna and 65% of female P. turrubarensis; however, this significance applied to only 9% and 46% of the individual broods in P. retropinna and P. turrubarensis, respectively, suggesting that the unequal reproductive success of sires (i.e. reproductive skew) mostly originated from differences in paternal contribution between, rather than within broods. Together, these findings tentatively suggest that superfetation may promote polyandry and reproductive skew in live-bearing fishes.
Collapse
Affiliation(s)
- Myrthe L Dekker
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisa M van Son
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Andres Hagmayer
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrew I Furness
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Bart J A Pollux
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Matsuzaki M, Hirohashi N, Tsudzuki M, Haqani MI, Maeda T, Mizushima S, Sasanami T. Longer and faster sperm exhibit better fertilization success in Japanese quail. Poult Sci 2021; 100:100980. [PMID: 33610899 PMCID: PMC7905478 DOI: 10.1016/j.psj.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/01/2021] [Indexed: 11/06/2022] Open
Abstract
In birds, sperm storage tubules (SST) located in the utero-vaginal junction are thought to be a site of sperm selection; however, the exact mechanism of sperm selection is poorly understood. Here, we investigated sperm entry into the SST and subsequent fertilization success under a competitive situation created by artificial insemination of a sperm mixture obtained from 2 males. We employed 2 quail strains, a wild-type and a dominant black (DB) type, as this allows easy assessment of paternity by feather coloration. We found paternity of embryos was biased toward DB males when a sperm mix with similar sperm numbers from the 2 males strains was artificially inseminated into females. Our novel sperm staining method with 2 different fluorescent dyes showed that the DB-biased fertilization was because of the better ability of DB sperm to enter the SST. Moreover, we found that DB sperm had a longer flagellum and midpiece. These characteristics probably allow sperm to swim faster in a high viscosity medium, which may be a similar environment to the lumen of the female reproductive tract. Our results indicated that sperm competition occurs to win a place in the SST and that filling the SST with their own spermatozoa is a critical step to achieve better fertilization success for the male Japanese quail.
Collapse
Affiliation(s)
- Mei Matsuzaki
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Oki, Shimane 685-0024, Japan
| | - Masaoki Tsudzuki
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Mohammad Ibrahim Haqani
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Teruo Maeda
- Laboratory of Animal Reproduction, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City, Shizuoka 422-8529, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan.
| |
Collapse
|
5
|
Lüpold S, Reil JB, Manier MK, Zeender V, Belote JM, Pitnick S. How female × male and male × male interactions influence competitive fertilization in Drosophila melanogaster. Evol Lett 2020; 4:416-429. [PMID: 33014418 PMCID: PMC7523561 DOI: 10.1002/evl3.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
How males and females contribute to joint reproductive success has been a long‐standing question in sexual selection. Under postcopulatory sexual selection, paternity success is predicted to derive from complex interactions among females engaging in cryptic female choice and males engaging in sperm competition. Such interactions have been identified as potential sources of genetic variation in sexually selected traits but are also expected to inhibit trait diversification. To date, studies of interactions between females and competing males have focused almost exclusively on genotypes and not phenotypic variation in sexually selected traits. Here, we characterize within‐ and between‐sex interactions in Drosophila melanogaster using isogenic lines with heritable variation in both male and female traits known to influence competitive fertilization. We confirmed, and expanded on, previously reported genotypic interactions within and between the sexes, and showed that several reproductive events, including sperm transfer, female sperm ejection, and sperm storage, were explained by two‐ and three‐way interactions among sex‐specific phenotypes. We also documented complex interactions between the lengths of competing males’ sperm and the female seminal receptacle, which are known to have experienced rapid female‐male co‐diversification. Our results highlight the nonindependence of sperm competition and cryptic female choice and demonstrate that complex interactions between the sexes do not limit the ability of multivariate systems to respond to directional sexual selection.
Collapse
Affiliation(s)
- Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland.,Department of Biology Syracuse University Syracuse New York 13244
| | - Jonathan Bradley Reil
- Department of Entomology Cornell University Ithaca New York 14853.,Department of Plant and Environmental Protection Sciences University of Hawaii at Mānoa Honolulu Hawaii 96822
| | - Mollie K Manier
- Department of Biology Syracuse University Syracuse New York 13244.,Department of Biological Sciences George Washington University Washington DC 20052
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich CH-8057 Switzerland
| | - John M Belote
- Department of Biology Syracuse University Syracuse New York 13244
| | - Scott Pitnick
- Department of Biology Syracuse University Syracuse New York 13244
| |
Collapse
|
6
|
Zajitschek S, Zajitschek F, Josway S, Al Shabeeb R, Weiner H, Manier MK. Costs and benefits of giant sperm and sperm storage organs in
Drosophila melanogaster. J Evol Biol 2019; 32:1300-1309. [DOI: 10.1111/jeb.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne Zajitschek
- Department of Biological Sciences George Washington University Washington DC USA
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Felix Zajitschek
- Department of Biological Sciences George Washington University Washington DC USA
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Sarah Josway
- Department of Biological Sciences George Washington University Washington DC USA
| | - Reem Al Shabeeb
- Department of Biological Sciences George Washington University Washington DC USA
| | - Halli Weiner
- Department of Biological Sciences George Washington University Washington DC USA
| | - Mollie K. Manier
- Department of Biological Sciences George Washington University Washington DC USA
| |
Collapse
|
7
|
Zadmajid V, Myers JN, Sørensen SR, Ernest Butts IA. Ovarian fluid and its impacts on spermatozoa performance in fish: A review. Theriogenology 2019; 132:144-152. [PMID: 31022604 DOI: 10.1016/j.theriogenology.2019.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Factors such as gamete quality can profoundly affect fertility, but the spawning micro-environment that surrounds the spermatozoa and eggs during gamete contact has largely been neglected. In fishes, understanding these gametic interactions is crucial because each female creates a unique spawning environment by simultaneously expelling her distinct ovarian fluid (OF) along with an egg batch. In turn, OF has been shown to influence spermatozoa performance traits by modifying spermatozoa behaviors and fertilization outcomes. Here, we shed light on these gametic interactions by overviewing literature on OF and how it impacts spermatozoa performance traits. Fish OF is clear or has slight coloration and can constitute ≤10-30% of egg mass. Viscosity of the OF is ∼2- to 3-fold higher than water and its pH ranges 6.2 to 8.8. Osmolality of the OF is lower in freshwater (190-322 mOsmol/kg) than marine species (289-514 mOsmol/kg). Na+ (98.3-213.7 mmol/L) and Cl- (89.8-172.7 mmol/L) are predominant ions in OF, while K+ (1.7-19.3 mmol/L), Mg2+ (0.4-8.1 mmol/L), and Ca2+(0.5-9.7 mmol/L) ions are detected at lower concentrations. Protein levels can be high in OF and exhibit intra- and inter-species variation (54-826 mg/100 mL). Fish OF also contains a series of organic components and substances that enhance and/or attract sperm towards the vicinity of an egg. OF can also differentially impact sperm based on genetic relatedness of mates, male phenotype (i.e. alternative reproductive tactics), or geographic origin. To conclude, when testing further reproductive paradigms, we suggest a shift from classic spermatozoa activation medium (water only) to more natural spawning media, which encompass OF-spermatozoa interactions.
Collapse
Affiliation(s)
- Vahid Zadmajid
- Department of Fisheries Science, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Jaelen Nicole Myers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Sune Riis Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Ian Anthony Ernest Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.
| |
Collapse
|
8
|
Muschett G, Umbers KDL, Herberstein ME. Male mate choice in the chameleon grasshopper (Kosciuscola tristis). Ethology 2018. [DOI: 10.1111/eth.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giselle Muschett
- Department of Biological Sciences; Macquarie University; North Ryde New South Wales Australia
| | - Kate D. L. Umbers
- School of Science and Health; University of Western Sydney; Penrith New South Wales Australia
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith New South Wales Australia
| | - Marie E. Herberstein
- Department of Biological Sciences; Macquarie University; North Ryde New South Wales Australia
| |
Collapse
|
9
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
10
|
|
11
|
Rosengrave P, Montgomerie R, Gemmell N. Cryptic female choice enhances fertilization success and embryo survival in chinook salmon. Proc Biol Sci 2016; 283:20160001. [PMID: 27009221 PMCID: PMC4822462 DOI: 10.1098/rspb.2016.0001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
In this study, we investigated two potentially important intersexual postcopulatory gametic interactions in a population of chinook salmon (Oncorhynchus tshawytscha): (i) the effect of female ovarian fluid (OF) on the behaviour of spermatozoa during fertilization and (ii) the effects of multilocus heterozygosity (MLH) (as an index of male quality) and female-male genetic relatedness on sperm behaviour and male fertilization success when there is sperm competition in the presence of that OF. To do this, we conducted a series of in vitro competitive fertilization experiments and found that, when ejaculates from two males are competing for access to a single female's unfertilized eggs, fertilization success was significantly biased towards the male whose sperm swam fastest in the female's OF. Embryo survival--a measure of fitness--was also positively correlated with both sperm swimming speed in OF and male MLH, providing novel evidence that cryptic female choice is adaptive for the female, enhancing the early survival of her offspring and potentially influencing her fitness.
Collapse
Affiliation(s)
- Patrice Rosengrave
- Department of Anatomy, University of Otago, Dunedin, New Zealand Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy University of Otago, Dunedin, New Zealand
| | - Robert Montgomerie
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7 L 3N6
| | - Neil Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Ala-Honkola O, Manier MK. Multiple mechanisms of cryptic female choice act on intraspecific male variation in Drosophila simulans. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2069-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Reinhold K, Engqvist L, Consul A, Ramm SA. Male birch catkin bugs vary copula duration to invest more in matings with novel females. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Lankinen Å, Karlsson Green K. Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AOB PLANTS 2015; 7:plv008. [PMID: 25613227 PMCID: PMC4344479 DOI: 10.1093/aobpla/plv008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today it is accepted that the theories of sexual selection and sexual conflict are general and can be applied to both animals and plants. However, potentially due to a controversial history, plant studies investigating sexual selection and sexual conflict are relatively rare. Moreover, these theories and concepts are seldom implemented in research fields investigating related aspects of plant ecology and evolution. Even though these theories are complex, and can be difficult to study, we suggest that several fields in plant biology would benefit from incorporating and testing the impact of selection pressures generated by sexual selection and sexual conflict. Here we give examples of three fields where we believe such incorporation would be particularly fruitful, including (i) mechanisms of pollen-pistil interactions, (ii) mating-system evolution in hermaphrodites and (iii) plant immune responses to pests and pathogens.
Collapse
Affiliation(s)
- Åsa Lankinen
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| | - Kristina Karlsson Green
- Swedish University of Agricultural Sciences, Plant Protection Biology, PO Box 102, S-230 53 Alnarp, Sweden
| |
Collapse
|
15
|
Collet JM, Blows MW. Female mate choice predicts paternity success in the absence of additive genetic variance for other female paternity bias mechanisms in Drosophila serrata. J Evol Biol 2014; 27:2568-72. [PMID: 25290296 DOI: 10.1111/jeb.12511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 09/08/2014] [Indexed: 11/29/2022]
Abstract
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.
Collapse
Affiliation(s)
- J M Collet
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | | |
Collapse
|
16
|
Abstract
Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially important) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Yeates SE, Diamond SE, Einum S, Emerson BC, Holt WV, Gage MJG. Cryptic choice of conspecific sperm controlled by the impact of ovarian fluid on sperm swimming behavior. Evolution 2013; 67:3523-36. [PMID: 24299405 PMCID: PMC3912916 DOI: 10.1111/evo.12208] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/29/2013] [Indexed: 12/19/2022]
Abstract
Despite evidence that variation in male-female reproductive compatibility exists in many fertilization systems, identifying mechanisms of cryptic female choice at the gamete level has been a challenge. Here, under risks of genetic incompatibility through hybridization, we show how salmon and trout eggs promote fertilization by conspecific sperm. Using in vitro fertilization experiments that replicate the gametic microenvironment, we find complete interfertility between both species. However, if either species' ova were presented with equivalent numbers of both sperm types, conspecific sperm gained fertilization precedence. Surprisingly, the species' identity of the eggs did not explain this cryptic female choice, which instead was primarily controlled by conspecific ovarian fluid, a semiviscous, protein-rich solution that bathes the eggs and is released at spawning. Video analyses revealed that ovarian fluid doubled sperm motile life span and straightened swimming trajectory, behaviors allowing chemoattraction up a concentration gradient. To confirm chemoattraction, cell migration tests through membranes containing pores that approximated to the egg micropyle showed that conspecific ovarian fluid attracted many more spermatozoa through the membrane, compared with heterospecific fluid or water. These combined findings together identify how cryptic female choice can evolve at the gamete level and promote reproductive isolation, mediated by a specific chemoattractive influence of ovarian fluid on sperm swimming behavior.
Collapse
Affiliation(s)
- Sarah E Yeates
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Sian E Diamond
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491Trondheim, Norway
- Norwegian Institute for Nature Research, NO-7485Trondheim, Norway
| | - Brent C Emerson
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Island Ecology and Evolution Research Group (IPNA-CSIC), C/Astrofísico Francisco Sánchez 338206 La Laguna, Tenerife, Canary Islands, Spain
| | - William V Holt
- Academic Department of Reproductive and Developmental Medicine, University of SheffieldLevel 4, Jessop Wing, Tree Root Walk, Sheffield, S10 2SF, United Kingdom
| | - Matthew J G Gage
- School of Biological Sciences, University of East AngliaNorwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
18
|
Evans JP, Sherman CDH. Sexual selection and the evolution of egg-sperm interactions in broadcast-spawning invertebrates. THE BIOLOGICAL BULLETIN 2013; 224:166-183. [PMID: 23995741 DOI: 10.1086/bblv224n3p166] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many marine invertebrate taxa are broadcast spawners, where multiple individuals release their gametes into the water for external fertilization, often in the presence of gametes from heterospecifics. Consequently, sperm encounter the considerable challenges of locating and fertilizing eggs from conspecific females. To overcome these challenges, many taxa exhibit species-specific attraction of sperm toward eggs through chemical signals released from eggs (sperm chemotaxis) and species-specific gamete recognition proteins (GRPs) that mediate compatibility of gametes at fertilization. In this prospective review, we highlight these selective forces, but also emphasize the role that sexual selection, manifested through sperm competition, cryptic female choice, and evolutionary conflicts of interest between the sexes (sexual conflict), can also play in mediating the action of egg chemoattractants and GRPs, and thus individual reproductive fitness. Furthermore, we explore patterns of selection at the level of gametes (sperm phenotype, gamete plasticity, and egg traits) to identify putative traits targeted by sexual selection in these species. We conclude by emphasizing the excellent, but relatively untapped, potential of broadcast-spawning marine invertebrates as model systems to illuminate several areas of research in post-mating sexual selection.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
19
|
Manier MK, Lüpold S, Pitnick S, Starmer WT. An analytical framework for estimating fertilization bias and the fertilization set from multiple sperm-storage organs. Am Nat 2013; 182:552-61. [PMID: 24021407 DOI: 10.1086/671782] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How sperm from competing males are used to fertilize eggs is poorly understood yet has important implications for postcopulatory sexual selection. Sperm may be used in direct proportion to their numerical representation within the fertilization set or with a bias toward one male over another. Previous theoretical treatments have assumed a single sperm-storage organ, but many taxa possess multiple organs or store sperm within multiple regions of the reproductive tract. In Drosophila, females store sperm in two distinct storage organ types: the seminal receptacle (SR) and the paired spermathecae. Here, we expand previous "raffle" models to describe "fertilization bias" independently for sperm within the SR and the spermathecae and estimate the fertilization set based on the relative contribution of sperm from the different sperm-storage organ types. We apply this model to three closely related species to reveal rapid divergence in the fertilization set and the potential for female sperm choice.
Collapse
Affiliation(s)
- Mollie K Manier
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | | | | | | |
Collapse
|
20
|
Female mediation of competitive fertilization success in Drosophila melanogaster. Proc Natl Acad Sci U S A 2013; 110:10693-8. [PMID: 23757499 DOI: 10.1073/pnas.1300954110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g., the female reproductive tract). Our understanding of female contributions to competitive fertilization success is limited, however, in part because of the challenges involved in observing events within the reproductive tract of internally fertilizing species while discriminating among sperm from competing males. Here, we used females from crosses among isogenic lines of Drosophila melanogaster, each mated to two genetically standardized males (the first with green- and the second with red-tagged sperm heads) to demonstrate heritable variation in female remating interval, progeny production rate, sperm-storage organ morphology, and a number of sperm performance, storage, and handling traits. We then used multivariate analyses to examine relationships between this female-mediated variation and competitive paternity. In particular, the timing of female ejection of excess second-male and displaced first-male sperm was genetically variable and, by terminating the process of sperm displacement, significantly influenced the relative numbers of sperm from each male competing for fertilization, and consequently biased paternity. Our results demonstrate that females do not simply provide a static arena for sperm competition but rather play an active and pivotal role in postcopulatory processes. Resolving the adaptive significance of genetic variation in female-mediated mechanisms of sperm handling is critical for understanding sexual selection, sexual conflict, and the coevolution of male and female reproductive traits.
Collapse
|
21
|
Ala-Honkola O, Hosken DJ, Manier MK, Lüpold S, Droge-Young EM, Berben KS, Collins WF, Belote JM, Pitnick S. Inbreeding reveals mode of past selection on male reproductive characters in Drosophila melanogaster. Ecol Evol 2013; 3:2089-102. [PMID: 23919154 PMCID: PMC3728949 DOI: 10.1002/ece3.625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/22/2023] Open
Abstract
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little-to-no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent-tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biology, Syracuse University Syracuse, New York ; Department of Biological and Environmental Science, University of Jyväskylä PO Box 35, 40014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Manier MK, Belote JM, Berben KS, Lüpold S, Ala-Honkola O, Collins WF, Pitnick S. Rapid diversification of sperm precedence traits and processes among three sibling Drosophila species. Evolution 2013; 67:2348-62. [PMID: 23888856 DOI: 10.1111/evo.12117] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
Abstract
Postcopulatory sexual selection is credited with driving rapid evolutionary diversification of reproductive traits and the formation of reproductive isolating barriers between species. This judgment, however, has largely been inferred rather than demonstrated due to general lack of knowledge about processes and traits underlying variation in competitive fertilization success. Here, we resolved processes determining sperm fate in twice-mated females, using transgenic Drosophila simulans and Drosophila mauritiana populations with fluorescently labeled sperm heads. Comparisons among these two species and Drosophila melanogaster revealed a shared motif in the mechanisms of sperm precedence, with postcopulatory sexual selection potentially occurring during any of the three discrete stages: (1) insemination; (2) sperm storage; and (3) sperm use for fertilization, and involving four distinct phenomena: (1) sperm transfer; (2) sperm displacement; (3) sperm ejection; and (4) sperm selection for fertilizations. Yet, underlying the qualitative similarities were significant quantitative differences in nearly every relevant character and process. We evaluate these species differences in light of concurrent investigations of within-population variation in competitive fertilization success and postmating/prezygotic reproductive isolation in hybrid matings between species to forge an understanding of the relationship between microevolutionary processes and macroevolutionary patterns as pertains to postcopulatory sexual selection in this group.
Collapse
Affiliation(s)
- Mollie K Manier
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Higginson DM, Miller KB, Segraves KA, Pitnick S. Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae). Evolution 2012; 66:1650-61. [PMID: 22519797 PMCID: PMC3775504 DOI: 10.1111/j.1558-5646.2011.01532.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sperm display remarkable morphological diversity among even closely related species, a pattern that is widely attributed to postcopulatory sexual selection. Surprisingly few studies have used phylogenetic analyses to discern the details of evolutionary diversification in ornaments and armaments subject to sexual selection, and the origins of novel sperm traits and their subsequent modification are particularly poorly understood. Here we investigate sperm evolution in diving beetles (Dytiscidae), revealing dramatic diversification in flagellum length, head shape, presence of sperm heteromorphism, and the presence/type of sperm conjugation, an unusual trait where two or more sperm unite for motility or transport. Sperm conjugation was found to be the ancestral condition in diving beetles, with subsequent diversification into three forms, each exhibiting varying degrees of evolutionary loss, convergence, and recurrence. Sperm head shape, but not length or heteromorphism, was found to evolve in a significantly correlated manner with conjugation, consistent with the different mechanisms of head alignment and binding required for the different forms of conjugation. Our study reveals that sperm morphological evolution is channeled along particular evolutionary pathways (i.e., conjugate form), yet subject to considerable diversification within those pathways through modification in sperm length, head shape, and heteromorphism.
Collapse
Affiliation(s)
- Dawn M. Higginson
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | - Kelly B. Miller
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Kari A. Segraves
- Department of Biology, Syracuse University, Syracuse, New York 13244
| | - Scott Pitnick
- Department of Biology, Syracuse University, Syracuse, New York 13244
| |
Collapse
|
24
|
Dean R, Nakagawa S, Pizzari T. The Risk and Intensity of Sperm Ejection in Female Birds. Am Nat 2011; 178:343-54. [DOI: 10.1086/661244] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
|
26
|
Bertin S, Scolari F, Guglielmino CR, Bonizzoni M, Bonomi A, Marchini D, Gomulski LM, Gasperi G, Malacrida AR, Matessi C. Sperm storage and use in polyandrous females of the globally invasive fruitfly, Ceratitis capitata. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1542-1551. [PMID: 20466005 DOI: 10.1016/j.jinsphys.2010.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 05/29/2023]
Abstract
The medfly, Ceratitis capitata, is an invasive species in which polyandry, associated with sperm precedence, is a common behaviour in the wild. In this species, characterized by internal fertilization, we disclose how the sperm from two males are stored in the female storage organs and how they are used in terms of paternity outcome. The experiments were designed to furnish comparable and unbiased estimates of sperm numbers and progeny in twice-mated females. Results are incorporated in a model through which it is possible to relate the amount of stored sperm with the progeny of twice-mated females. The results show that polyandrous medfly females conserve equal amounts of sperm from the two males to fertilize their eggs. However, we observed a clear advantage of the second male's sperm in siring progeny, which interestingly decreases in favor of the first male as ovipositions progress. The results enable us to exclude differential sperm mortality and suggest that it is the mechanics governing the storage organs which causes the initial, but decreasing second male sperm precedence during the female reproductive life. These outcomes allow us to correlate sperm use in polyandrous females with the mating strategies and invasiveness of this fly.
Collapse
Affiliation(s)
- Sabrina Bertin
- Dipartimento di Biologia Animale, Università degli studi di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Garcia-Gonzalez F, Evans JP. Fertilization success and the estimation of genetic variance in sperm competitiveness. Evolution 2010; 65:746-56. [PMID: 20880262 DOI: 10.1111/j.1558-5646.2010.01127.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A key question in sexual selection is whether the ability of males to fertilize eggs under sperm competition exhibits heritable genetic variation. Addressing this question poses a significant problem, however, because a male's ability to win fertilizations ultimately depends on the competitive ability of rival males. Attempts to partition genetic variance in sperm competitiveness, as estimated from measures of fertilization success, must therefore account for stochastic effects due to the random sampling of rival sperm competitors. In this contribution, we suggest a practical solution to this problem. We advocate the use of simple cross-classified breeding designs for partitioning sources of genetic variance in sperm competitiveness and fertilization success and show how these designs can be used to avoid stochastic effects due to the random sampling of rival sperm competitors. We illustrate the utility of these approaches by simulating various scenarios for estimating genetic parameters in sperm competitiveness, and show that the probability of detecting additive genetic variance in this trait is restored when stochastic effects due to the random sampling of rival sperm competitors are controlled. Our findings have important implications for the study of the evolutionary maintenance of polyandry.
Collapse
Affiliation(s)
- Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | |
Collapse
|
28
|
Paternity control for externally fertilised eggs: behavioural mechanisms in the waterfrog species complex. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0934-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
BUSSIÈRE LF, DEMONT M, PEMBERTON AJ, HALL MD, WARD PI. The assessment of insemination success in yellow dung flies using competitive PCR. Mol Ecol Resour 2010; 10:292-303. [DOI: 10.1111/j.1755-0998.2009.02754.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. F. BUSSIÈRE
- Zoology Museum, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M. DEMONT
- Zoology Museum, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - A. J. PEMBERTON
- Zoology Museum, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M. D. HALL
- Evolution & Ecology Research Centre and School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - P. I. WARD
- Zoology Museum, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| |
Collapse
|
30
|
van Velzen E, Schärer L, Pen I. The effect of cryptic female choice on sex allocation in simultaneous hermaphrodites. Proc Biol Sci 2009; 276:3123-31. [PMID: 19515660 DOI: 10.1098/rspb.2009.0566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sex allocation theory for simultaneous hermaphrodites has focused primarily on the effects of sperm competition, but the role of mate choice has so far been neglected. We present a model to study the coevolution of cryptic female choice and sex allocation in simultaneous hermaphrodites. We show that the mechanism of cryptic female choice has a strong effect on the evolutionary outcome: if individuals remove a fixed proportion of less-preferred sperm, the optimal sex allocation is more female biased (i.e. more biased towards egg production) than without cryptic female choice; conversely, if a fixed amount of sperm is removed, sex allocation is less female-biased than without cryptic female choice, and can easily become male biased (i.e. biased towards sperm production). Under male-biased sex allocation, hermaphroditism can become unstable and the population can split into pure males and hermaphrodites with a female-biased allocation. We discuss the idea that the evolution of sex allocation may depend on the outcome of sexual conflict over the fate of received sperm: the sperm donor may attempt to manipulate or by-pass cryptic female choice and the sperm recipient is expected to resist such manipulation. We conclude that cryptic female choice can have a strong influence on sex allocation in simultaneous hermaphrodites and strongly encourage empirical work on this question.
Collapse
Affiliation(s)
- Ellen van Velzen
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9751 Haren, The Netherlands.
| | | | | |
Collapse
|
31
|
Vermeulen A, Engels S, Sauer KP. Mating Effort and Cryptic Sperm Choice in Scorpionflies: Male Investment Strategy vs. Female Control. Ethology 2008. [DOI: 10.1111/j.1439-0310.2008.01569.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Partridge C, Ahnesjö I, Kvarnemo C, Mobley KB, Berglund A, Jones AG. The effect of perceived female parasite load on post-copulatory male choice in a sex-role-reversed pipefish. Behav Ecol Sociobiol 2008. [DOI: 10.1007/s00265-008-0668-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Rosengrave P, Gemmell NJ, Metcalf V, McBride K, Montgomerie R. A mechanism for cryptic female choice in chinook salmon. Behav Ecol 2008. [DOI: 10.1093/beheco/arn089] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Pai A, Bernasconi G. Polyandry and female control: the red flour beetle Tribolium castaneum as a case study. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:148-59. [PMID: 17358014 DOI: 10.1002/jez.b.21164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Females of many animal species are polyandrous, and there is evidence that they can control pre- and post-mating events. There has been a growing interest in consequences of polyandry for male and female reproductive success and offspring fitness, and its evolutionary significance. In several taxa, females exhibit mate choice both before and after mating and can influence the paternity of their offspring, enhancing offspring number and quality, but potentially countering male interests. Studying female mating biology and in particular post-copulatory female control mechanisms thus promises to yield insights into sexual selection and the potential of male-female coevolution. Here, we highlight the red flour beetle Tribolium castaneum (Herbst), a storage pest, as a model system to study polyandry, and review studies addressing the effects of polyandry on male sperm competitive ability and female control of post-mating events. These studies show that the outcome of sperm competition in the red flour beetle is influenced by both male and female traits. Furthermore, recent advances suggest that sexual conflict may have shaped reproductive traits in this species.
Collapse
Affiliation(s)
- Aditi Pai
- Department of Biology, Spelman College, Atlanta, Georgia, USA.
| | | |
Collapse
|
35
|
Eberle M, Perret M, Kappeler PM. Sperm Competition and Optimal Timing of Matings in Microcebus murinus. INT J PRIMATOL 2007. [DOI: 10.1007/s10764-007-9220-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Pilastro A, Mandelli M, Gasparini C, Dadda M, Bisazza A. Copulation duration, insemination efficiency and male attractiveness in guppies. Anim Behav 2007. [DOI: 10.1016/j.anbehav.2006.09.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
|
38
|
Kempenaers B. Mate Choice and Genetic Quality: A Review of the Heterozygosity Theory. ADVANCES IN THE STUDY OF BEHAVIOR 2007. [DOI: 10.1016/s0065-3454(07)37005-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Ward PI. Postcopulatory Selection in the Yellow Dung Fly Scathophaga stercoraria (L.) and the Mate‐Now‐Choose‐Later Mechanism of Cryptic Female Choice. ADVANCES IN THE STUDY OF BEHAVIOR 2007. [DOI: 10.1016/s0065-3454(07)37007-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Contreras-Garduño J, Córdoba-Aguilar A. Sexual selection in hermit crabs: a review and outlines of future research. J Zool (1987) 2006. [DOI: 10.1111/j.1469-7998.2006.00182.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Ilango K. Structure and function of the spermathecal complex in the phlebotomine sandfly Phlebotomus papatasi Scopoli (Diptera: Psychodidae): II. post-copulatory histophysiological changes during the gonotrophic cycle. J Biosci 2006; 30:733-47. [PMID: 16388146 DOI: 10.1007/bf02703572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The spermathecal complex of Phlebotomus papatasi Scopoli (Diptera: Psychodidae) undergoes histological and physiological changes during its gonotropic cycle. The present histochemical study revealed a mucopolysaccharide secretory mass in the spermathecae of the newly emerged sandfly. Sperm competition occurs when two or more males compete to fertilize an ovum in the female reproductive tract. In this study, spermatophores of two or more competing males were deposited at the base of the spermathecal ducts, which originate from the female bursa copulatrix. This suggests that females play a role in sperm displacement, which is defined as any situation in which the last male to mate with a female fertilizes maximum number her eggs. A blood meal ingested by the female for ovary development and egg laying stimulates the release of sperm from the spermatophore. The spermatozoa then migrate to the lumen of the spermatheca. The ultrastructure of spermatozoa comprises a head with double-layered acrosomal perforatorium, an elongate nucleus, and the axoneme with a 9 + 9 + 0 flagellar pattern. This axomene differs from the flagellate axoneme of other Psychodinae. Morphological changes, such as the casting off of the acrosomal membrane, and histological changes in the spermatophore are also described. Mating plugs that have been described previously in sandflies appear to be artefacts. Females of P. papatasi may be inseminated more than once during each gonotrophic cycle, and additional inseminations may be necessary for each cycle. The relationships between the volumes of the sperm and the spermatheca were calculated to determine sperm utilization and fecundity of P. papatasi. As the females of P. papatasi mate polyandrously, the anatomical and physiological complexity of the spermathecal complex may be related to post-copulatory sexual selection.
Collapse
Affiliation(s)
- K Ilango
- Zoological Survey of India, Southern Regional Station, 130 Santhome High Road, Chennai 600 028, India.
| |
Collapse
|
42
|
Ilango K. Structure and function of the spermathecal complex in the phlebotomine sandfly Phlebotomus papatasi Scopoli (Diptera: Psychodidae): I. ultrastructure and histology. J Biosci 2006; 30:711-31. [PMID: 16388145 DOI: 10.1007/bf02703571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Females of phlebotomine sandflies (Diptera: Psychodidae) possess highly variable spermathecae that present several important taxonomic characters. The cause of this diversity remains a neglected field of sandfly biology, but may possibly be due to female post-mating sexual selection. To understand this diversity, a detailed study of the structure and function of the spermathecal complex in at least one of the species was a prerequisite. Using scanning and transmission electron microscopy, described here is ultrastructure of the spermathecal complex in the sand fly, Phlebotomus papatasi Scopoli. The spermathecal complexes are paired; each consists of a long spermathecal duct, a cylindrical spermathecal body, and a spherical spermathecal gland. Muscle fibres, nerves, tracheoles, and vascular sinuses connect the spermathecal body and duct through the epithelial layers. Spermathecal gland is formed by a typical insect epidermis and consisting of an epithelial layer of class-1 epidermal cells and elaborate glandular cells of class-3 epidermal cells, each having both receiving and conducting ductules (i.e. "end apparatus") and a "cytological apodeme", which is a newly described cell structure. The spermathecal body and duct are lined by class-1 epidermal cells and a cuticle, and are enveloped by a super-contracting visceral muscular system. The cuticle consists of rubber-like resilin, and its fibrillar arrangement and chemical nature are described. A well-developed neuromuscular junction exists between the spermathecal gland and the spermathecal body, which are connected to each other by a nerve and a muscle. The spermathecal complexes of the sandfly are compared with those of other insect species. The physiological role and possible evolutionary significance of the different parts of spermathecal complex in the sandfly are inferred from the morphology and behaviour. Post-mating sexual selection may be responsible for the structural uniqueness of the spermathecal complex in phlebotomine sandflies.
Collapse
Affiliation(s)
- K Ilango
- Zoological Survey of India, Southern Regional Station, Chennai 600 028, India.
| |
Collapse
|
43
|
Wenninger EJ, Averill AL. Influence of body and genital morphology on relative male fertilization success in oriental beetle. Behav Ecol 2006. [DOI: 10.1093/beheco/ark013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
|
45
|
Abstract
Sexual conflict is a conflict between the evolutionary interests of individuals of the two sexes. The sexes can have different trait optima but this need not imply conflict if their optima can be attained simultaneously. Conflict requires an interaction between males and females (e.g. mating or parental care), such that the optimal outcomes for each sex cannot be achieved simultaneously. It is important to distinguish between battleground models, which define the parameter space for conflict and resolution models, which seek solutions for how conflicts are resolved. Overt behavioural conflict may or may not be manifest at resolution. Following Fisherian principles, an immediate (i.e. direct) benefit to a male that has a direct cost to his female partner can have an indirect benefit to the female via her male progeny. Female resistance to mating has been claimed to represent concurrence rather than conflict, due to female benefits via sons (males with low mating advantage are screened out by resistance). However, the weight of current evidence (both theoretical and empirical) supports sexual conflict for many cases. I review (i) conflicts over mate quality, encounters between males and females of genetically diverged subpopulations, mating rate and inbreeding, (ii) the special features of postcopulatory sexual conflict and (iii) some general features of importance for conflict resolution.
Collapse
Affiliation(s)
- G A Parker
- Population and Evolutionary Biology Research Group, School of Biological Sciences, University of Liverpool, Liverpool L69 3GS, UK.
| |
Collapse
|
46
|
Long TAF, Pischedda A. Do female Drosophila melanogaster adaptively bias offspring sex ratios in relation to the age of their mate? Proc Biol Sci 2006; 272:1781-7. [PMID: 16096089 PMCID: PMC1559865 DOI: 10.1098/rspb.2005.3165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of offspring sex ratios in response to parental quality is predicted when the long-term fitness returns of sons and daughters differ. One factor that may influence a mother's sex allocation decision is the quality (or attractiveness) of her mate. We investigated whether the sex ratios of offspring produced by female Drosophila melanogaster are biased with respect to the age of the males to which they are mated, and whether there is an adaptive basis for this phenomenon. We found that females mated to old males (13 d post-eclosion) initially produced a greater proportion of daughters than did females mated to young males (1 d post-eclosion). This pattern does not appear to be due to a systematic difference in the numbers or mortality of the X- and Y-bearing sperm originating from old and young fathers, as the overall sex ratios of all offspring produced from a single copulation did not differ between broods fathered by the two types of males. The sons of older males fared worse in competitive mating assays than did the sons of younger males, while daughters of old and young males were of comparable fitness. These results suggest that there is an adaptive basis for the observed sex ratio modification.
Collapse
Affiliation(s)
- Tristan A F Long
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|
47
|
Bussière LF, Hunt J, Jennions MD, Brooks R. SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution 2006. [DOI: 10.1554/05-378.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Abstract
When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split--ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.
Collapse
Affiliation(s)
- D J Marshall
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
49
|
House CM, Simmons LW. Relative influence of male and female genital morphology on paternity in the dung beetle Onthophagus taurus. Behav Ecol 2005. [DOI: 10.1093/beheco/ari066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Denk AG, Holzmann A, Peters A, Vermeirssen EL, Kempenaers B. Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav Ecol 2005. [DOI: 10.1093/beheco/ari065] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|