1
|
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol 2022; 20:e3001698. [PMID: 35853091 PMCID: PMC9295944 DOI: 10.1371/journal.pbio.3001698] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.
Collapse
Affiliation(s)
- Paul Jay
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - Emilie Tezenas
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
- Univ. Lille, CNRS, UMR 8198 –Evo-Eco-Paleo, F-59000 Lille, France
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Archetti M. Evidence from automixis with inverted meiosis for the maintenance of sex by loss of complementation. J Evol Biol 2021; 35:40-50. [PMID: 34927297 DOI: 10.1111/jeb.13975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
The adaptive value of sexual reproduction is still debated. A short-term disadvantage of asexual reproduction is loss of heterozygosity, which leads to the unmasking of recessive deleterious mutations. The cost of this loss of complementation is predicted to be higher than the twofold cost of meiosis for most types of asexual reproduction. Automixis with terminal fusion of sister nuclei is especially vulnerable to the effect of loss of complementation. It is found, however, in some taxa including oribatid mites, the most prominent group of ancient asexuals. Here, I show that automixis with terminal fusion is stable if it is associated with inverted meiosis and that this appears to be the case in nature, notably in oribatid mites. The existence of automixis with terminal fusion, and its co-occurrence with inverted meiosis, therefore, is consistent with the hypothesis that loss of complementation is important in the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Marco Archetti
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
4
|
Little Evidence of Antagonistic Selection in the Evolutionary Strata of Fungal Mating-Type Chromosomes ( Microbotryum lychnidis-dioicae). G3-GENES GENOMES GENETICS 2019; 9:1987-1998. [PMID: 31015196 PMCID: PMC6553529 DOI: 10.1534/g3.119.400242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recombination suppression on sex chromosomes often extends in a stepwise manner, generating evolutionary strata of differentiation between sex chromosomes. Sexual antagonism is a widely accepted explanation for evolutionary strata, postulating that sets of genes beneficial in only one sex are successively linked to the sex-determining locus. The anther-smut fungus Microbotryum lychnidis-dioicae has mating-type chromosomes with evolutionary strata, only some of which link mating-type genes. Male and female roles are non-existent in this fungus, but mating-type antagonistic selection can also generate evolutionary strata, although the life cycle of the fungus suggests it should be restricted to few traits. Here, we tested the hypothesis that mating-type antagonism may have triggered recombination suppression beyond mating-type genes in M. lychnidis-dioicae by searching for footprints of antagonistic selection in evolutionary strata not linking mating-type loci. We found that these evolutionary strata (i) were not enriched in genes upregulated in the haploid phase, where cells are of alternative mating types, (ii) carried no gene differentially expressed between mating types, and (iii) carried no genes displaying footprints of specialization in terms of protein sequences (dN/dS) between mating types after recommended filtering. Without filtering, eleven genes showed signs of positive selection in the strata not linking mating-type genes, which constituted an enrichment compared to autosomes, but their functions were not obviously involved in antagonistic selection. Thus, we found no strong evidence that antagonistic selection has contributed to extending recombination suppression beyond mating-type genes. Alternative hypotheses should therefore be explored to improve our understanding of the sex-related chromosome evolution.
Collapse
|
5
|
Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 2019; 29:944-953. [PMID: 31043437 PMCID: PMC6581054 DOI: 10.1101/gr.242578.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.
Collapse
Affiliation(s)
- Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
6
|
Branco S, Carpentier F, Rodríguez de la Vega RC, Badouin H, Snirc A, Le Prieur S, Coelho MA, de Vienne DM, Hartmann FE, Begerow D, Hood ME, Giraud T. Multiple convergent supergene evolution events in mating-type chromosomes. Nat Commun 2018; 9:2000. [PMID: 29784936 PMCID: PMC5962589 DOI: 10.1038/s41467-018-04380-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes. Supergenes result from beneficial linkage and recombination suppression between two or more genes. Giraud and colleagues use whole genome sequencing data to show convergent evolution of supergenes on mating-type chromosomes in multiple closely-related fungal lineages.
Collapse
Affiliation(s)
- Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Hélène Badouin
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.,Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Damien M de Vienne
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622, Villeurbanne, France
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Dominik Begerow
- Ruhr-Universitat Bochum, AG Geobotanik Gebaude ND 03/174 Universitatsstraße, 15044780, Bochum, Germany
| | - Michael E Hood
- Department of Biology, University of Virginia, Gilmer 051, Charlottesville, VA, 22903, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
7
|
Yamazaki T, Ichihara K, Suzuki R, Oshima K, Miyamura S, Kuwano K, Toyoda A, Suzuki Y, Sugano S, Hattori M, Kawano S. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita. Sci Rep 2017; 7:11679. [PMID: 28916791 PMCID: PMC5601483 DOI: 10.1038/s41598-017-11677-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt- and mt+ strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt- MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.
Collapse
Affiliation(s)
- Tomokazu Yamazaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kensuke Ichihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ryogo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenshiro Oshima
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinichi Miyamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyoshi Kuwano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
8
|
Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. Proc Natl Acad Sci U S A 2017. [PMID: 28630332 DOI: 10.1073/pnas.1701658114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes can display successive steps of recombination suppression known as "evolutionary strata," which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9-2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.
Collapse
|
9
|
Engelstädter J. Asexual but Not Clonal: Evolutionary Processes in Automictic Populations. Genetics 2017; 206:993-1009. [PMID: 28381586 PMCID: PMC5499200 DOI: 10.1534/genetics.116.196873] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 11/18/2022] Open
Abstract
Many parthenogenetically reproducing animals produce offspring not clonally but through different mechanisms collectively referred to as automixis. Here, meiosis proceeds normally but is followed by a fusion of meiotic products that restores diploidy. This mechanism typically leads to a reduction in heterozygosity among the offspring compared to the mother. Following a derivation of the rate at which heterozygosity is lost at one and two loci, depending on the number of crossovers between loci and centromere, a number of models are developed to gain a better understanding of basic evolutionary processes in automictic populations. Analytical results are obtained for the expected neutral genetic variation, effective population size, mutation-selection balance, selection with overdominance, the spread of beneficial mutations, and selection on crossover rates. These results are complemented by numerical investigations elucidating how associative overdominance (two off-phase deleterious mutations at linked loci behaving like an overdominant locus) can in some cases maintain heterozygosity for prolonged times, and how clonal interference affects adaptation in automictic populations. These results suggest that although automictic populations are expected to suffer from the lack of gene shuffling with other individuals, they are nevertheless, in some respects, superior to both clonal and outbreeding sexual populations in the way they respond to beneficial and deleterious mutations. Implications for related genetic systems such as intratetrad mating, clonal reproduction, selfing, as well as different forms of mixed sexual and automictic reproduction are discussed.
Collapse
Affiliation(s)
- Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
10
|
Rabe F, Bosch J, Stirnberg A, Guse T, Bauer L, Seitner D, Rabanal FA, Czedik-Eysenberg A, Uhse S, Bindics J, Genenncher B, Navarrete F, Kellner R, Ekker H, Kumlehn J, Vogel JP, Gordon SP, Marcel TC, Münsterkötter M, Walter MC, Sieber CMK, Mannhaupt G, Güldener U, Kahmann R, Djamei A. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. eLife 2016; 5:e20522. [PMID: 27835569 PMCID: PMC5106213 DOI: 10.7554/elife.20522] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.
Collapse
Affiliation(s)
- Franziska Rabe
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jason Bosch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Alexandra Stirnberg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Tilo Guse
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Lisa Bauer
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Denise Seitner
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Fernando A Rabanal
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Simon Uhse
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Janos Bindics
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Bianca Genenncher
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Fernando Navarrete
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Ronny Kellner
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Heinz Ekker
- Vienna Biocenter Core Facilities GmbH, Vienna, Austria
| | - Jochen Kumlehn
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | - John P Vogel
- DOE Joint Genome Institute, California, United States
| | - Sean P Gordon
- DOE Joint Genome Institute, California, United States
| | - Thierry C Marcel
- INRA UMR BIOGER, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mathias C Walter
- Department of Genome-oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Christian MK Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Genome-oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Armin Djamei
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
11
|
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. FUNGAL BIOL REV 2015; 29:220-229. [PMID: 26688691 PMCID: PMC4680991 DOI: 10.1016/j.fbr.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, VIC 3010, Australia
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
12
|
Svendsen N, Reisser CMO, Dukić M, Thuillier V, Ségard A, Liautard-Haag C, Fasel D, Hürlimann E, Lenormand T, Galimov Y, Haag CR. Uncovering Cryptic Asexuality in Daphnia magna by RAD Sequencing. Genetics 2015; 201:1143-55. [PMID: 26341660 PMCID: PMC4649641 DOI: 10.1534/genetics.115.179879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/29/2015] [Indexed: 02/06/2023] Open
Abstract
The breeding systems of many organisms are cryptic and difficult to investigate with observational data, yet they have profound effects on a species' ecology, evolution, and genome organization. Genomic approaches offer a novel, indirect way to investigate breeding systems, specifically by studying the transmission of genetic information from parents to offspring. Here we exemplify this method through an assessment of self-fertilization vs. automictic parthenogenesis in Daphnia magna. Self-fertilization reduces heterozygosity by 50% compared to the parents, but under automixis, whereby two haploid products from a single meiosis fuse, the expected heterozygosity reduction depends on whether the two meiotic products are separated during meiosis I or II (i.e., central vs. terminal fusion). Reviewing the existing literature and incorporating recombination interference, we derive an interchromosomal and an intrachromosomal prediction of how to distinguish various forms of automixis from self-fertilization using offspring heterozygosity data. We then test these predictions using RAD-sequencing data on presumed automictic diapause offspring of so-called nonmale producing strains and compare them with "self-fertilized" offspring produced by within-clone mating. The results unequivocally show that these offspring were produced by automixis, mostly, but not exclusively, through terminal fusion. However, the results also show that this conclusion was only possible owing to genome-wide heterozygosity data, with phenotypic data as well as data from microsatellite markers yielding inconclusive or even misleading results. Our study thus demonstrates how to use the power of genomic approaches for elucidating breeding systems, and it provides the first demonstration of automictic parthenogenesis in Daphnia.
Collapse
Affiliation(s)
- Nils Svendsen
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), campus CNRS, 19, 34293 Montpellier Cedex 5, France
| | - Celine M O Reisser
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), campus CNRS, 19, 34293 Montpellier Cedex 5, France Ecology and Evolution, University of Fribourg, 1700 Fribourg, Switzerland
| | - Marinela Dukić
- Zoology Institute, Evolutionary Biology, University of Basel, 4051 Basel, Switzerland
| | - Virginie Thuillier
- Ecology and Evolution, University of Fribourg, 1700 Fribourg, Switzerland
| | - Adeline Ségard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), campus CNRS, 19, 34293 Montpellier Cedex 5, France
| | | | - Dominique Fasel
- Ecology and Evolution, University of Fribourg, 1700 Fribourg, Switzerland
| | - Evelin Hürlimann
- Ecology and Evolution, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), campus CNRS, 19, 34293 Montpellier Cedex 5, France
| | - Yan Galimov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), campus CNRS, 19, 34293 Montpellier Cedex 5, France Ecology and Evolution, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Nougué O, Rode NO, Jabbour-zahab R, Ségard A, Chevin LM, Haag CR, Lenormand T. Automixis in Artemia: solving a century-old controversy. J Evol Biol 2015; 28:2337-48. [DOI: 10.1111/jeb.12757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Affiliation(s)
- O. Nougué
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
| | - N. O. Rode
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
- INRA - UMR 1334 AGAP; Montpellier France
| | - R. Jabbour-zahab
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
| | - A. Ségard
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
| | - L.-M. Chevin
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
| | - C. R. Haag
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
| | - T. Lenormand
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; Montpellier Cedex 5 France
| |
Collapse
|
14
|
Hood ME, Scott M, Hwang M. Breaking linkage between mating compatibility factors: Tetrapolarity in Microbotryum. Evolution 2015; 69:2561-72. [PMID: 26339889 DOI: 10.1111/evo.12765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Linkage of genes determining separate self-incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between reproductive assurance and recombination. However, in some organisms, multiple loci are required to be heterozygous in offspring while segregating independently in meiosis. This condition, termed "tetrapolarity" in basidiomycete fungi, originated in the ancestor to that phylum, and there have been multiple reports of subsequent transitions to "bipolarity" (i.e., linkage of separate mating factors). In the genus Microbotryum, we present the first report of the breaking of linkage between two haploid self-incompatibility factors and derivation of a tetrapolar breeding system. This breaking of linkage is associated with major alteration of genome structure, with the compatibility factors residing on separate mating-type chromosome pairs, reduced in size but retaining the structural dimorphism characteristic for regions of recombination suppression. The challenge to reproductive assurance from unlinked compatibility factors may be overcome by the automictic mating system in Microbotryum (i.e., mating among products of the same meiosis). As a curious outcome, this linkage transition and its effects upon outcrossing compatibility rates may reinforce automixis as a mating system. These observations contribute to understanding mating systems and linkage as fundamental principles of sexual life cycles, with potential impacts on conventional wisdom regarding mating-type evolution.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002.
| | - Molly Scott
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002
| | - Mindy Hwang
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002
| |
Collapse
|
15
|
Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus Microbotryum lychnidis-dioicae. Genetics 2015; 200:1275-84. [PMID: 26044594 PMCID: PMC4574255 DOI: 10.1534/genetics.115.177709] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/02/2015] [Indexed: 12/02/2022] Open
Abstract
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.
Collapse
|
16
|
Fontanillas E, Hood ME, Badouin H, Petit E, Barbe V, Gouzy J, de Vienne DM, Aguileta G, Poulain J, Wincker P, Chen Z, Toh SS, Cuomo CA, Perlin MH, Gladieux P, Giraud T. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. Mol Biol Evol 2015; 32:928-43. [PMID: 25534033 PMCID: PMC4379399 DOI: 10.1093/molbev/msu396] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.
Collapse
Affiliation(s)
- Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | | | - Hélène Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France Department of Biology, Amherst College
| | - Valérie Barbe
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Jérôme Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Damien M de Vienne
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France CNRS UMR 8030, Evry, France
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville
| | - Pierre Gladieux
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| |
Collapse
|
17
|
Whittle CA, Votintseva A, Ridout K, Filatov DA. Recent and massive expansion of the mating-type-specific region in the smut fungus Microbotryum. Genetics 2015; 199:809-16. [PMID: 25567990 PMCID: PMC4349073 DOI: 10.1534/genetics.114.171702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/22/2014] [Indexed: 12/25/2022] Open
Abstract
The presence of large genomic regions with suppressed recombination (SR) is a key shared property of some sex- and mating-type determining (mat) chromosomes identified to date in animals, plants, and fungi. Why such regions form and how they evolve remain central questions in evolutionary genetics. The smut fungus Microbotryum lychnis-dioicae is a basidiomycete fungus in which dimorphic mat chromosomes have been reported, but the size, age, and evolutionary dynamics of the SR region remains unresolved. To identify the SR region in M. lychnis-dioicae and to study its evolution, we sequenced 12 genomes (6 per mating type) of this species and identified the genomic contigs that show fixed sequence differences between the mating types. We report that the SR region spans more than half of the mat chromosome (>2.3 Mbp) and that it is of very recent origin (∼2 × 10(6) years) as the average sequence divergence between mating types was only 2% in the SR region. This contrasts with a much higher divergence in and around the mating-type determining pheromone receptor locus in the SR, suggesting a recent and massive expansion of the SR region. Our results comprise the first reported case of recent massive SR expansion documented in a basidiomycete fungus.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Antonina Votintseva
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Kate Ridout
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
18
|
Abstract
Genomic regions that determine mating compatibility are subject to distinct evolutionary forces that can lead to a cessation of meiotic recombination and the accumulation of structural changes between members of the homologous chromosome pair. The relatively recent discovery of dimorphic mating-type chromosomes in fungi can aid the understanding of sex chromosome evolution that is common to dioecious plants and animals. For the anther-smut fungus, Microbotryum lychnidis-dioicae (= M. violaceum isolated from Silene latifolia), the extent of recombination cessation on the dimorphic mating-type chromosomes has been conflictingly reported. Comparison of restriction digest optical maps for the two mating-type chromosomes shows that divergence extends over 90% of the chromosome lengths, flanked at either end by two pseudoautosomal regions. Evidence to support the expansion of recombination cessation in stages from the mating-type locus toward the pseudoautosomal regions was not found, but evidence of such expansion could be obscured by ongoing processes that affect genome structure. This study encourages the comparison of forces that may drive large-scale recombination suppression in fungi and other eukaryotes characterized by dimorphic chromosome pairs associated with sexual life cycles.
Collapse
|
19
|
ABBATE JL, HOOD ME. Dynamic linkage relationships to the mating-type locus in automictic fungi of the genus Microbotryum. J Evol Biol 2010; 23:1800-5. [DOI: 10.1111/j.1420-9101.2010.02036.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Keller PJ, Knop M. Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots. PLoS Genet 2009; 5:e1000533. [PMID: 19557188 PMCID: PMC2694357 DOI: 10.1371/journal.pgen.1000533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/22/2009] [Indexed: 01/21/2023] Open
Abstract
Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation.
Collapse
Affiliation(s)
- Philipp J. Keller
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Michael Knop
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| |
Collapse
|
21
|
Johnson LJ. The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements. Evol Biol 2007. [DOI: 10.1007/s11692-007-9012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Knop M. Evolution of thehemiascomycete yeasts: on life styles and the importance of inbreeding. Bioessays 2006; 28:696-708. [PMID: 16929561 DOI: 10.1002/bies.20435] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The term 'breeding system' is used to describe the morphological and behavioural aspects of the sexual life cycle of a species. The yeast breeding system provides three alternatives that enable hapoids to return to the diploid state that is necessary for meiosis: mating of unrelated haploids (amphimixis), mating between spores from the same tetrad (intratetrad mating, automixis) and mother daughter mating upon mating type switching (haplo-selfing). The frequency of specific mating events affects the level of heterozygosity present in individuals and the genetic diversity of populations. This review discusses the reproductive strategies of yeasts, in particular S. cerevisiae (Bakers' or budding yeast). Emphasis is put on intratetrad mating, its implication for diversity, and how the particular genome structure could have evolved to ensure the preservation of a high degree of heterozygosity in conjunction with frequent intratetrad matings. I also discuss how the ability of yeast to control the number of spores that are formed accounts for high intratetrad mating rates and for enhanced transmission of genomic variation. I extend the discussion to natural genetic variation and propose that a high level of plasticity is inherent in the yeast breeding system, which may allow variation of the breeding behaviour in accordance with the needs imposed by the environment.
Collapse
Affiliation(s)
- Michael Knop
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
23
|
|
24
|
Abstract
The small genomes of fungi are expected to have little repetitive content other than rDNA genes. Moreover, among asexual or highly selfing lineages, the diversity of repetitive elements is also expected to be very low. However, in the automictic fungus Microbotryum violaceum, a very large proportion of random DNA fragments from the autosomes and the fungal sex chromosomes are repetitive in nature, either as retrotransposon or helicase sequences. Among the retrotransposon sequences, examples were found from each major kind of elements, including copia, gypsy, and non-LTR sequences. The most numerous were copia-like elements, which are believed to be rare in fungi, particularly among basidiomycetes. The many helicase sequences appear to belong to the recently discovered Helitron type of transposable elements. Also, sequences that could not be identified as a known type of gene were also very repetitive within the database of random fragments from M. violaceum. The differentiated pair of fungal sex chromosomes and suppression of recombination may be the major forces determining the highly repetitive content in the small genome of M. violaceum.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
25
|
Tellier A, Villaréal LMMA, Giraud T. Maintenance of Sex‐Linked Deleterious Alleles by Selfing and Group Selection in Metapopulations of the Phytopathogenic FungusMicrobotryum violaceum. Am Nat 2005; 165:577-89. [PMID: 15795854 DOI: 10.1086/428680] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 12/22/2004] [Indexed: 11/03/2022]
Abstract
Microbotryum violaceum is a fungus that causes the sterilizing anther smut disease in many Caryophyllaceae. Its diploid teliospores are heterozygous at the mating-type locus, normally producing equal proportions of haploid sporidia of the two mating types. However, natural populations contain high frequencies of individuals producing sporidia of only one mating type. This mating-type ratio bias is caused by the presence of deleterious alleles at haploid phase ("haplo-lethals") linked to the mating-type locus. These haplo-lethals can be transmitted if there is conjugation among the products of meiosis (intratetrad selfing). Haplo-lethals still suffer from selective disadvantages, through reducing the infection probability of strains that carry them, and thus cannot persist in a panmictic population. We develop a realistic model of a metapopulation of M. violaceum on its host Silene latifolia. Simulations show that if intratetrad selfing rate is high, haplo-lethals can be maintained under a metapopulation structure because of founder effects and selection at the population level. Populations founded only by strains carrying haplo-lethals experience a lower extinction rate precisely because of their lower infection ability; they spread more slowly and sterilize fewer plants, thereby allowing their host population to grow more rapidly and therefore to be less prone to extinction.
Collapse
Affiliation(s)
- Aurelien Tellier
- Ecologie, Systématique et Evolution, Unité Mixte de Recherche 8079, Centre National de la Recherche Scientifique-Université Paul Sabatier, Bátiment 360, France.
| | | | | |
Collapse
|
26
|
|
27
|
Johnson LJ, Antonovics J, Hood ME. THE EVOLUTION OF INTRATETRAD MATING RATES. Evolution 2005. [DOI: 10.1554/05-398.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Hood ME, Antonovics J. Mating Within the Meiotic Tetrad and the Maintenance of Genomic Heterozygosity. Genetics 2004. [DOI: 10.1093/genetics/166.4.1751] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mating among the products of a single meiosis (automixis or meiotic parthenogenesis) is found in diverse groups of plant, animal, and fungal taxa. Restoration of the diploid stage is often strictly controlled and brings together products separated at the first meiotic division. Despite apparent similarities to diploid selfing, the theoretical prediction is that heterozygosity should be maintained on all chromosomes when it is linked to the centromeres and thus also segregates at the first meiotic division. Using the fungus Microbotryum, we directly test this prediction by linear tetrad analysis. The patterns of meiotic segregation for chromosome size variation (electrophoretic karyotypes) and PCR products (AFLP procedures) were determined for Microbotryum lineages native to North America and Europe. Our data reveal a surprisingly dynamic genome that is rich in heterozygosity and where size-dimorphic autosomes are common. The genetic variation agrees with the prediction of centromere-linked heterozygosity. This was observed to the greatest extent in the lineage of Microbotryum native to North America where there was consistent first-division segregation and independent assortment of multiple linkage groups. The data also show properties that distinguish the fungal sex chromosomes from the autosomes in both lineages of Microbotryum. We describe a scenario where the mating system of automixis with first-division restitution is the result of feedback mechanisms to control exposure of genetic load.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|