1
|
Camaiti M, Hutchinson MN, Hipsley CA, Aguilar R, Black J, Chapple DG, Evans AR. Patterns of girdle shape and their correlates in Australian limb-reduced skinks. Proc Biol Sci 2024; 291:20241653. [PMID: 39353558 PMCID: PMC11444766 DOI: 10.1098/rspb.2024.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
The evolution of limb reduction in squamates is a classic example of convergence, but the skeletal morphological patterns associated with it are underexplored. To provide insights on the biomechanical and developmental consequences of transitions to limb reduction, we use geometric morphometrics to examine the morphology of pectoral and pelvic girdles in 90 species of limb-reduced skinks and their fully limbed relatives. Clavicle shapes converge towards an acute anterior bend when forelimbs are lost but hindlimbs are retained-a morphology typical of sand-swimmers. This may either indicate functional adaptations to locomotion in fine substrates, or a developmental consequence of complete limb loss. The shape of limb-bearing elements of both girdles (coracoid and pelvis) instead closely mirrors limb reduction, becoming more simplified as undulation replaces limbed locomotion. Integration between girdles decreases in taxa lacking elements of the forelimbs but not hindlimbs, indicating differential selection on each girdle in response to distinct locomotory strategies. However, this pattern becomes less clear when considering phylogenetic history, perhaps because it is limited to one specific clade (Lerista). We show how the functional demands of locomotion can induce changes at different levels of organismal organization, including both external and internal structures.
Collapse
Affiliation(s)
- Marco Camaiti
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Life Sciences, Natural History Museum, LondonSW7 5BD, UK
| | - Mark N. Hutchinson
- South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Science and Engineering, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | | | - Rocio Aguilar
- Department of Sciences, Museums Victoria, Carlton, Victoria, Australia
| | - Jay Black
- School of Earth Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - David G. Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Rawson JRG, Deakin WJ, Stubbs TL, Smith TJ, Rayfield EJ, Donoghue PCJ. Widespread convergence towards functional optimization in the lower jaws of crocodile-line archosaurs. Proc Biol Sci 2024; 291:20240720. [PMID: 39163982 PMCID: PMC11335402 DOI: 10.1098/rspb.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Extant crocodilian jaws are subject to functional demands induced by feeding and hydrodynamics. However, the morphological and ecological diversity of extinct crocodile-line archosaurs is far greater than that of living crocodilians, featuring repeated convergence towards disparate ecologies including armoured herbivores, terrestrial macropredators and fully marine forms. Crocodile-line archosaurs, therefore, present a fascinating case study for morphological and functional divergence and convergence within a clade across a wide range of ecological scenarios. Here, we build performance landscapes of two-dimensional theoretical jaw shapes to investigate the influence of strength, speed and hydrodynamics in the morphological evolution of crocodile-line archosaur jaws, and test whether ecologically convergent lineages evolved similarly optimal jaw function. Most of the 243 sampled jaw morphologies occupy optimized regions of theoretical morphospace for either rotational efficiency, resistance to Von Mises stress, hydrodynamic efficiency or a trade-off between multiple functions, though some seemingly viable shapes remain unrealized. Jaw speed is optimized only in a narrow region of morphospace whereas many shapes possess optimal jaw strength, which may act as a minimum boundary rather than a strong driver for most taxa. This study highlights the usefulness of theoretical morphology in assessing functional optimality, and for investigating form-function relationships in diverse clades.
Collapse
Affiliation(s)
| | | | | | - Thomas J. Smith
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
3
|
Burtner AE, M. Grossnickle D, Santana SE, Law CJ. Gliding toward an understanding of the origin of flight in bats. PeerJ 2024; 12:e17824. [PMID: 39071138 PMCID: PMC11283779 DOI: 10.7717/peerj.17824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Bats are the only mammals capable of powered flight and have correspondingly specialized body plans, particularly in their limb morphology. The origin of bat flight is still not fully understood due to an uninformative fossil record but, from the perspective of a functional transition, it is widely hypothesized that bats evolved from gliding ancestors. Here, we test predictions of the gliding-to-flying hypothesis of the origin of bat flight by using phylogenetic comparative methods to model the evolution of forelimb and hindlimb traits on a dataset spanning four extinct bats and 231 extant mammals with diverse locomotor modes. Our results reveal that gliders exhibit adaptive trait optima (1) toward relatively elongate forelimbs that are intermediate between those of bats and non-gliding arborealists, and (2) toward relatively narrower but not longer hindlimbs that are intermediate between those of non-gliders and bats. We propose an adaptive landscape based on limb length and width optimal trends derived from our modeling analyses. Our results support a hypothetical evolutionary pathway wherein glider-like postcranial morphology precedes a bat-like morphology adapted to powered-flight, setting a foundation for future developmental, biomechanical, and evolutionary research to test this idea.
Collapse
Affiliation(s)
| | - David M. Grossnickle
- University of Washington, Seattle, WA, United States
- Oregon Institute of Technology, Klamath Falls, OR, United States
| | | | - Chris J. Law
- University of Washington, Seattle, WA, United States
- University of Texas at Austin, Austin, United States
| |
Collapse
|
4
|
Bels V, Le Floch G, Kirchhoff F, Gastebois G, Davenport J, Baguette M. Food transport in Reptilia: a comparative viewpoint. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220542. [PMID: 37839442 PMCID: PMC10577028 DOI: 10.1098/rstb.2022.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Reptilia exploit a large diversity of food resources from plant materials to living mobile prey. They are among the first tetrapods that needed to drink to maintain their water homeostasis. Here were compare the feeding and drinking mechanisms in Reptilia through an empirical approach based on the available data to open perspectives in our understanding of the evolution of the various mechanisms determined in these Tetrapoda for exploiting solid and liquid food resources. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Vincent Bels
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Glenn Le Floch
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Florence Kirchhoff
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | | | - John Davenport
- School of Biological, Earth and Environmental Sciences, Distillery Fields, North Mall, University College Cork, Ireland T23 N73K
| | - Michel Baguette
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
- Station d'Ecologie Théorique et Expérimentale, CNRS UAR 2029, Route du CNRS, F-09200 Moulis, France
| |
Collapse
|
5
|
González-Ferreiro M, García-París M, Sainz-Escudero L, López-Estrada EK. Analyses of head and thorax in Eupomphini (Meloidae) suggest that complex behaviors are not associated to changes in general shape. Integr Zool 2023; 18:949-957. [PMID: 36929152 DOI: 10.1111/1749-4877.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Our results reject an association between general shape of head and thorax with defensive and courtship behaviors in the studied Eupomphini blister beetles. Instead we found that shape of thorax and head radiated in all directions of the morphospace. We also identified a radical separation between two lineages that could represent future evolutionary constraints for thorax evolution.
Collapse
Affiliation(s)
| | | | | | - E Karen López-Estrada
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Ford KL, Peterson R, Bernt M, Albert JS. Convergence is Only Skin Deep: Craniofacial Evolution in Electric Fishes from South America and Africa (Apteronotidae and Mormyridae). Integr Org Biol 2022; 4:obac022. [PMID: 35976714 PMCID: PMC9375771 DOI: 10.1093/iob/obac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Apteronotidae and Mormyridae are species-rich clades of weakly electric fishes from Neotropical and Afrotropical freshwaters, respectively, known for their high morphological disparity and often regarded as a classic example of convergent evolution. Here, we use CT-imaging and 3D geometric morphometrics to quantify disparity in craniofacial morphologies, and to test the hypothesis of convergent skull-shape evolution in a phylogenetic context. For this study, we examined 391 specimens representing 78 species of Apteronotidae and Mormyridae including 30 of 37 (81%) of all valid genera with the goal to sample most of the craniofacial disparity known in these clades. We found no overlap between Apteronotidae and Mormyridae in the skull-shape morphospace using PCA and a common landmark scheme, and therefore no instances of complete phenotypic convergence. Instead, we found multiple potential instances of incomplete convergence, and at least one parallel shift among electric fish clades. The greatest components of shape variance in both families are the same as observed for most vertebrate clades: heterocephaly (i.e., opposite changes in relative sizes of the snout and braincase regions of the skull), and heterorhynchy (i.e., dorsoventral changes in relative snout flexion and mouth position). Mormyrid species examined here exhibit less craniofacial disparity than do apteronotids, potentially due to constraints associated with a larger brain size, ecological constraints related to food-type availability. Patterns of craniofacial evolution in these two clades depict a complex story of phenotypic divergence and convergence in which certain superficial similarities of external morphology obscure deeper osteological and presumably developmental differences of skull form and function. Among apteronotid and mormyrid electric fishes, craniofacial convergence is only skin deep.
Collapse
Affiliation(s)
- Kassandra L Ford
- Institute of Ecology and Evolution, Universität Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Switzerland
- Department of Biology, University of Louisiana at Lafayette, USA
| | - Rose Peterson
- Department of Biological Sciences, George Washington University, USA
| | - Maxwell Bernt
- Department of Biology, University of Louisiana at Lafayette, USA
- Department of Ichthyology, American Museum of Natural History, USA
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, USA
| |
Collapse
|
7
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies. BMC Biol 2022; 20:101. [PMID: 35550084 PMCID: PMC9097364 DOI: 10.1186/s12915-022-01294-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birds are key indicator species in extant ecosystems, and thus we would expect extinct birds to provide insights into the nature of ancient ecosystems. However, many aspects of extinct bird ecology, particularly their diet, remain obscure. One group of particular interest is the bizarre toothed and long-snouted longipterygid birds. Longipterygidae is the most well-understood family of enantiornithine birds, the dominant birds of the Cretaceous period. However, as with most Mesozoic birds, their diet remains entirely speculative. RESULTS To improve our understanding of longipterygids, we investigated four proxies in extant birds to determine diagnostic traits for birds with a given diet: body mass, claw morphometrics, jaw mechanical advantage, and jaw strength via finite element analysis. Body mass of birds tended to correspond to the size of their main food source, with both carnivores and herbivores splitting into two subsets by mass: invertivores or vertivores for carnivores, and granivores + nectarivores or folivores + frugivores for herbivores. Using claw morphometrics, we successfully distinguished ground birds, non-raptorial perching birds, and raptorial birds from one another. We were unable to replicate past results isolating subtypes of raptorial behaviour. Mechanical advantage was able to distinguish herbivorous diets with particularly high values of functional indices, and so is useful for identifying these specific diets in fossil taxa, but overall did a poor job of reflecting diet. Finite element analysis effectively separated birds with hard and/or tough diets from those eating foods which are neither, though could not distinguish hard and tough diets from one another. We reconstructed each of these proxies in longipterygids as well, and after synthesising the four lines of evidence, we find all members of the family but Shengjingornis (whose diet remains inconclusive) most likely to be invertivores or generalist feeders, with raptorial behaviour likely in Longipteryx and Rapaxavis. CONCLUSIONS This study provides a 20% increase in quantitatively supported fossil bird diets, triples the number of diets reconstructed in enantiornithine species, and serves as an important first step in quantitatively investigating the origins of the trophic diversity of living birds. These findings are consistent with past hypotheses that Mesozoic birds occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Jen A Bright
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
8
|
Watanabe J. Detecting (non)parallel evolution in multidimensional spaces: angles, correlations and eigenanalysis. Biol Lett 2022; 18:20210638. [PMID: 35168376 PMCID: PMC8847891 DOI: 10.1098/rsbl.2021.0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Parallelism between evolutionary trajectories in a trait space is often seen as evidence for repeatability of phenotypic evolution, and angles between trajectories play a pivotal role in the analysis of parallelism. However, properties of angles in multidimensional spaces have not been widely appreciated by biologists. To remedy this situation, this study provides a brief overview on geometric and statistical aspects of angles in multidimensional spaces. Under the null hypothesis that trajectory vectors have no preferred directions (i.e. uniform distribution on hypersphere), the angle between two independent vectors is concentrated around the right angle, with a more pronounced peak in a higher-dimensional space. This probability distribution is closely related to t- and beta distributions, which can be used for testing the null hypothesis concerning a pair of trajectories. A recently proposed method with eigenanalysis of a vector correlation matrix can be connected to the test of no correlation or concentration of multiple vectors, for which simple test procedures are available in the statistical literature. Concentration of vectors can also be examined by tools of directional statistics such as the Rayleigh test. These frameworks provide biologists with baselines to make statistically justified inferences for (non)parallel evolution.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| |
Collapse
|
9
|
Integrative Approach Uncovers New Patterns of Ecomorphological Convergence in Slow Arboreal Xenarthrans. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIdentifying ecomorphological convergence examples is a central focus in evolutionary biology. In xenarthrans, slow arboreality independently arose at least three times, in the two genera of ‘tree sloths’, Bradypus and Choloepus, and the silky anteater, Cyclopes. This specialized locomotor ecology is expectedly reflected by distinctive morpho-functional convergences. Cyclopes, although sharing several ecological features with ‘tree sloths’, do not fully mirror the latter in their outstandingly similar suspensory slow arboreal locomotion. We hypothesized that the morphology of Cyclopes is closer to ‘tree sloths’ than to anteaters, but yet distinct, entailing that slow arboreal xenarthrans evolved through ‘incomplete’ convergence. In a multivariate trait space, slow arboreal xenarthrans are hence expected to depart from their sister taxa evolving toward the same area, but not showing extensive phenotypical overlap, due to the distinct position of Cyclopes. Conversely, a pattern of ‘complete’ convergence (i.e., widely overlapping morphologies) is hypothesized for ‘tree sloths’. Through phylogenetic comparative methods, we quantified humeral and femoral convergence in slow arboreal xenarthrans, including a sample of extant and extinct non-slow arboreal xenarthrans. Through 3D geometric morphometrics, cross-sectional properties (CSP) and trabecular architecture, we integratively quantified external shape, diaphyseal anatomy and internal epiphyseal structure. Several traits converged in slow arboreal xenarthrans, especially those pertaining to CSP. Phylomorphospaces and quantitative convergence analyses substantiated the expected patterns of ‘incomplete’ and ‘complete’ convergence for slow arboreal xenarthrans and ‘tree sloths’, respectively. This work, highlighting previously unidentified convergence patterns, emphasizes the value of an integrative multi-pronged quantitative approach to cope with complex mechanisms underlying ecomorphological convergence.
Collapse
|
10
|
Ma W, Pittman M, Butler RJ, Lautenschlager S. Macroevolutionary trends in theropod dinosaur feeding mechanics. Curr Biol 2021; 32:677-686.e3. [PMID: 34919807 DOI: 10.1016/j.cub.2021.11.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Theropod dinosaurs underwent some of the most remarkable dietary changes in vertebrate evolutionary history, shifting from ancestral carnivory1-3 to hypercarnivory4,5 and omnivory/herbivory,6-9 with some taxa eventually reverting to carnivory.10-12 The mandible is an important tool for food acquisition in vertebrates and reflects adaptations to feeding modes and diets.13,14 The morphofunctional modifications accompanying the dietary changes in theropod dinosaurs are not well understood because most of the previous studies focused solely on the cranium and/or were phylogenetically limited in scope,12,15-21 while studies that include multiple clades are usually based on linear measurements and/or discrete osteological characters.8,22 Given the potential relationship between macroevolutionary change and ontogenetic pattern,23 we explore whether functional morphological patterns observed in theropod mandibular evolution show similarities to the ontogenetic trajectory. Here, we use finite element analysis to study the mandibles of non-avialan coelurosaurian theropods and demonstrate how feeding mechanics vary between dietary groups and major clades. We reveal an overall reduction in feeding-induced stresses along all theropod lineages through time. This is facilitated by a post-dentary expansion and the development of a downturned dentary in herbivores and an upturned dentary in carnivores likely via the "curved bone effect." We also observed the same reduction in feeding-induced stress in an ontogenetic series of jaws of the tyrannosaurids Tarbosaurus and Tyrannosaurus, which is best attributed to bone functional adaptation. This suggests that this common tendency for structural strengthening of the theropod mandible through time, irrespective of diet, is linked to "functional peramorphosis" of bone functional adaptations acquired during ontogeny.
Collapse
Affiliation(s)
- Waisum Ma
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Law CJ. Different evolutionary pathways lead to incomplete convergence of elongate body shapes in carnivoran mammals. Syst Biol 2021; 71:788-796. [PMID: 34791502 DOI: 10.1093/sysbio/syab091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although convergence is often recognized as a ubiquitous feature across the Tree of Life, whether the underlying traits also exhibit similar evolutionary pathways towards convergent forms puzzles biologists. In carnivoran mammals, "elongate," "slender," and "long" are often used to describe and even to categorize mustelids (martens, polecats, and weasels), herpestids (mongooses), viverrids (civets and genets), and other carnivorans together. But just how similar these carnivorans are and whether there is convergence in the morphological component that contribute to elongation has never been assessed. Here, I found that these qualitatively-described elongate carnivorans exhibited incomplete convergence towards elongate bodies compared to other terrestrial carnivorans. In contrast, the morphological components underlying body shape variation do not exhibit convergence despite evidence that these components are more elongate in elongate carnivorans compared to non-elongate carnivorans. Furthermore, these components also exhibited shorter but different phylogenetic half-lives towards more elongate adaptive peaks, indicating that different selective pressures can create multiple pathways to elongation. Incorporating the fossil record will facilitate further investigation of whether body elongation evolved adaptively or if it is simply a retained ancestral trait.
Collapse
Affiliation(s)
- Chris J Law
- Department of Biology, University of Washington, Seattle, WA, 98105; Richard Gilder Graduate School, Department of Mammalogy, and Division of Paleontology, American Museum of Natural History, New York, NY, USA 10024
| |
Collapse
|
12
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
13
|
Melstrom KM, Angielczyk KD, Ritterbush KA, Irmis RB. The limits of convergence: the roles of phylogeny and dietary ecology in shaping non-avian amniote crania. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202145. [PMID: 34540239 PMCID: PMC8441121 DOI: 10.1098/rsos.202145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/17/2021] [Indexed: 05/28/2023]
Abstract
Cranial morphology is remarkably varied in living amniotes and the diversity of shapes is thought to correspond with feeding ecology, a relationship repeatedly demonstrated at smaller phylogenetic scales, but one that remains untested across amniote phylogeny. Using a combination of morphometric methods, we investigate the links between phylogenetic relationships, diet and skull shape in an expansive dataset of extant toothed amniotes: mammals, lepidosaurs and crocodylians. We find that both phylogeny and dietary ecology have statistically significant effects on cranial shape. The three major clades largely partition morphospace with limited overlap. Dietary generalists often occupy clade-specific central regions of morphospace. Some parallel changes in cranial shape occur in clades with distinct evolutionary histories but similar diets. However, members of a given clade often present distinct cranial shape solutions for a given diet, and the vast majority of species retain the unique aspects of their ancestral skull plan, underscoring the limits of morphological convergence due to ecology in amniotes. These data demonstrate that certain cranial shapes may provide functional advantages suited to particular dietary ecologies, but accounting for both phylogenetic history and ecology can provide a more nuanced approach to inferring the ecology and functional morphology of cryptic or extinct amniotes.
Collapse
Affiliation(s)
- Keegan M. Melstrom
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA 90007, USA
- Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0102, USA
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
| | - Kenneth D. Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Kathleen A. Ritterbush
- Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0102, USA
| | - Randall B. Irmis
- Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT 84112-0102, USA
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
| |
Collapse
|
14
|
Gómez RO, Lois-Milevicich J. Why the long beak? Phylogeny, convergence, feeding ecology, and evolutionary allometry shaped the skull of the Giant Cowbird Molothrus oryzivorus (Icteridae). J Morphol 2021; 282:1587-1603. [PMID: 34369611 DOI: 10.1002/jmor.21408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Cowbirds are a successful group of obligate brood parasites in the Neotropical passerine family Icteridae that offer an interesting model to explore the factors behind the evolution of the bird craniomandibular complex. The Giant Cowbird, Molothrus oryzivorus, stands out from its congeners, among other features, in diet (feeds mostly on fruit, nectar, and arthropods, instead on seeds), its larger body size, and longer, more robust beak with a much broader bony casque than in other cowbirds. In turn, Giant Cowbirds show a remarkable resemblance in these features to the distantly related caciques and oropendolas (some are its breeding hosts). However, the causes behind the latter resemblance and the distinctiveness among cowbirds have not yet been elucidated. We aim to explore the factors involved in the diverging morphology of the Giant Cowbird from its congeners and the convergence with caciques and oropendolas, surveying their skull and lower jaw under an explicit evolutionary framework. Using geometric morphometrics and comparative methods, we assessed the signal of phylogeny, convergence, feeding ecology, and size in skull shape. Our results indicated that evolution of the craniomandibular complex of icterids in general, and of the beak morphology in the Giant Cowbird in particular, are shaped by multiple factors, with phylogeny being largely overridden by changes in size (evolutionary allometry), primarily, and feeding ecology, secondarily. However, the evolution of a broad bony casque in the Giant Cowbird, otherwise a hallmark of caciques and oropendolas, does not appear to have primarily been ruled by evolutionary allometry. Instead, taking into account the unique extreme convergence between Giant Cowbirds and some of its caciques hosts, it might be consequence of selective regimes associated with parasite-host interactions acting on top of other evolutionary processes. This suggests chick mimicry as a reasonable explanation for this peculiar morphology that would require further investigation.
Collapse
Affiliation(s)
- Raúl O Gómez
- CONICET-Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Ciudad Universitaria, Buenos Aires, Argentina
| | - Jimena Lois-Milevicich
- Departamento de Ecología, Genética y Evolución and Instituto de Ecología, Genética y Evolución (IEGEBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
15
|
Terray L, Stoetzel E, Herrel A, Cornette R. The contribution of functional traits to the understanding of palaeoenvironmental changes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Performance traits implicated in feeding interact directly with the environment and are consequently relevant ecological indicators. However, they have rarely been used to better understand palaeoenvironmental variation. Here, we evaluate the usefulness of a performance (i.e. functional) trait, estimated bite force, in reconstructing the palaeoecology of shrews. We investigate the relationships between mandible morphology, bite force estimates and the ecological context. We use geometric morphometrics to quantify mandible shape diversity in shrews of the archaeological site El Harhoura 2 (Rabat, Morocco), dated from the Late Pleistocene to the Holocene. Morphological groups were used instead of taxa as units of diversity. To explore how phenotypic traits are linked to their environment, they were compared with palaeoenvironmental inferences for the El Harhoura 2 site extracted from the literature. Morphological groups acted as phenotypic response units. Estimated bite force was related to palaeoenvironmental variation over the considered period, with a particular sensibility to arid/humid transitions. The complementarity of morphological and performance indicators allowed us to infer functional convergence and divergence among shrews. Our results suggest that functional traits may be relevant indicators of changes in palaeoenvironments. This approach opens up new possibilities to explore the impact of environmental changes on extinct organisms.
Collapse
Affiliation(s)
- Léa Terray
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Emmanuelle Stoetzel
- Histoire naturelle de l’Homme préhistorique (HNHP), Musée de l’Homme, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, Palais de Chaillot, 17 place du Trocadéro, 75016 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum National d’Histoire Naturelle, CNRS, 55 rue Buffon, 75005 Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
16
|
Bolet A, Stanley EL, Daza JD, Arias JS, Čerňanský A, Vidal-García M, Bauer AM, Bevitt JJ, Peretti A, Evans SE. Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr Biol 2021; 31:3303-3314.e3. [PMID: 34129826 DOI: 10.1016/j.cub.2021.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
Oculudentavis khaungraae was described based on a tiny skull trapped in amber. The slender tapering rostrum with retracted narial openings, large eyes, and short vaulted braincase led to its identification as the smallest avian dinosaur on record, comparable to the smallest living hummingbirds. Despite its bird-like appearance, Oculudentavis showed several features inconsistent with its original phylogenetic placement. Here, we describe a more complete specimen that demonstrates Oculudentavis is actually a bizarre lizard of uncertain position. The new specimen is described as a new species within the genus Oculudentavis. The new interpretation and phylogenetic placement highlight a rare case of convergent evolution in skull proportions but apparently not in morphological characters. Our results re-affirm the importance of Myanmar amber in yielding unusual taxa from a forest ecosystem rarely represented in the fossil record.
Collapse
Affiliation(s)
- Arnau Bolet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; School of Earth Sciences, University of Bristol, Bristol, UK
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, FL, USA
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA.
| | - J Salvador Arias
- Unidad Ejecutora Lillo (CONICET - Fundación Miguel Lillo), San Miguel, de Tucumán, Tucumán, Argentina
| | - Andrej Čerňanský
- Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, AB, Canada
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Adolf Peretti
- GRS Gemresearch Swisslab AG and Peretti Museum Foundation, Meggen, Switzerland
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
17
|
Tamagnini D, Meloro C, Raia P, Maiorano L. Testing the occurrence of convergence in the craniomandibular shape evolution of living carnivorans. Evolution 2021; 75:1738-1752. [PMID: 33844288 PMCID: PMC8359831 DOI: 10.1111/evo.14229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Convergence consists in the independent evolution of similar traits in distantly related species. The mammalian craniomandibular complex constitutes an ideal biological structure to investigate ecomorphological dynamics and the carnivorans, due to their phenotypic variability and ecological flexibility, offer an interesting case study to explore the occurrence of convergent evolution. Here, we applied multiple pattern‐based metrics to test the occurrence of convergence in the craniomandibular shape of extant carnivorans. To this aim, we tested for convergence in many dietary groups and analyzed several cases of carnivoran convergence concerning either ecologically equivalent species or ecologically similar species of different body sizes described in the literature. Our results validate the occurrence of convergence in ecologically equivalent species in a few cases (as well as in the case of giant and red pandas), but almost never support the occurrence of convergent evolution in dietary categories of living carnivorans. Therefore, convergent evolution in this clade appears to be a rare phenomenon. This is probably the consequence of a complex interplay of one‐to‐many, many‐to‐one, and many‐to‐many relationships taking place between ecology, biomechanics, and morphology.
Collapse
Affiliation(s)
- Davide Tamagnini
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, University of Naples Federico II, Napoli, 80126, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| |
Collapse
|
18
|
Bardua C, Fabre AC, Clavel J, Bon M, Das K, Stanley EL, Blackburn DC, Goswami A. Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs. Nat Commun 2021; 12:2503. [PMID: 33947859 PMCID: PMC8096824 DOI: 10.1038/s41467-021-22792-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Habitat is one of the most important factors shaping organismal morphology, but it may vary across life history stages. Ontogenetic shifts in ecology may introduce antagonistic selection that constrains adult phenotype, particularly with ecologically distinct developmental phases such as the free-living, feeding larval stage of many frogs (Lissamphibia: Anura). We test the relative influences of developmental and ecological factors on the diversification of adult skull morphology with a detailed analysis of 15 individual cranial regions across 173 anuran species, representing every extant family. Skull size, adult microhabitat, larval feeding, and ossification timing are all significant factors shaping aspects of cranial evolution in frogs, with late-ossifying elements showing the greatest disparity and fastest evolutionary rates. Size and microhabitat show the strongest effects on cranial shape, and we identify a "large size-wide skull" pattern of anuran, and possibly amphibian, evolutionary allometry. Fossorial and aquatic microhabitats occupy distinct regions of morphospace and display fast evolution and high disparity. Taxa with and without feeding larvae do not notably differ in cranial morphology. However, loss of an actively feeding larval stage is associated with higher evolutionary rates and disparity, suggesting that functional pressures experienced earlier in ontogeny significantly impact adult morphological evolution.
Collapse
Affiliation(s)
- Carla Bardua
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
| | - Julien Clavel
- Department of Life Sciences, Natural History Museum, London, UK
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Margot Bon
- Department of Life Sciences, Natural History Museum, London, UK
| | - Kalpana Das
- Museum für Naturkunde, Leibniz Institut für Evolutions und Biodiversitätsforschung, Berlin, Germany
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|
19
|
Scarsbrook L, Sherratt E, Hitchmough RA, Rawlence NJ. Skeletal variation in extant species enables systematic identification of New Zealand's large, subfossil diplodactylids. BMC Ecol Evol 2021; 21:67. [PMID: 33906608 PMCID: PMC8080345 DOI: 10.1186/s12862-021-01808-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
New Zealand’s diplodactylid geckos exhibit high species-level diversity, largely independent of discernible osteological changes. Consequently, systematic affinities of isolated skeletal elements (fossils) are primarily determined by comparisons of size, particularly in the identification of Hoplodactylus duvaucelii, New Zealand’s largest extant gecko species. Here, three-dimensional geometric morphometrics of maxillae (a common fossilized element) was used to determine whether consistent shape and size differences exist between genera, and if cryptic extinctions have occurred in subfossil ‘Hoplodactylus cf. duvaucelii’. Sampling included 13 diplodactylid species from five genera, and 11 Holocene subfossil ‘H. cf. duvaucelii’ individuals. We found phylogenetic history was the most important predictor of maxilla morphology among extant diplodactylid genera. Size comparisons could only differentiate Hoplodactylus from other genera, with the remaining genera exhibiting variable degrees of overlap. Six subfossils were positively identified as H. duvaucelii, confirming their proposed Holocene distribution throughout New Zealand. Conversely, five subfossils showed no clear affinities with any modern diplodactylid genera, implying either increased morphological diversity in mainland ‘H. cf. duvaucelii’ or the presence of at least one extinct, large, broad-toed diplodactylid species.
Collapse
Affiliation(s)
- Lachie Scarsbrook
- Otago Paleogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand.
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Nicolas J Rawlence
- Otago Paleogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Dutel H, Gröning F, Sharp AC, Watson PJ, Herrel A, Ross CF, Jones MEH, Evans SE, Fagan MJ. Comparative cranial biomechanics in two lizard species: impact of variation in cranial design. J Exp Biol 2021; 224:jeb.234831. [PMID: 33504585 PMCID: PMC7970069 DOI: 10.1242/jeb.234831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards. Summary:In vivo measurements and computer-based simulations of the cranial mechanics of two large lizards indicate that similar mechanical behaviour is shared by lizards with distinct cranial architecture, and show the importance of the postorbital bar in resisting the feeding loads.
Collapse
Affiliation(s)
- Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK .,Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alana C Sharp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Peter J Watson
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| | - Anthony Herrel
- UMR 7179 MECADEV, MNHN - CNRS, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Marc E H Jones
- Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Susan E Evans
- Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Michael J Fagan
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
21
|
Müller MA, Merten LJF, Böhmer C, Nyakatura JA. Pushing the boundary? Testing the "functional elongation hypothesis" of the giraffe's neck. Evolution 2021; 75:641-655. [PMID: 33443310 DOI: 10.1111/evo.14171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Although giraffes maintain the usual mammalian cervical number of seven vertebrae, their first thoracic vertebra (T1) exhibits aberrant anatomy and has been hypothesized to functionally elongate the neck. We test this "functional elongation hypothesis" by combining phylogenetically informed analyses of neck length, three-dimensional (3D) vertebral shape, and of the functional significance of shape differences across a broad sample of ruminants and camelids. Digital bone models of the cervicothoracic transition were subjected to 3D geometric morphometric analysis revealing how the shape of the seventh cervical (C7) has converged in several long-necked species. However, we find a unique "cervicalization" of the giraffe's T1. In contrast, we demonstrate a "thoracalization" of C7 for the European bison. Other giraffids (okapi and extinct Sivatherium) did not exhibit "cervicalized" T1 morphology. Quantitative range of motion (ROM) analysis at the cervicothoracic transition in ruminants and camelids confirms the "functional elongation hypothesis" for the giraffe in terms of increased mobility, especially with regard to dorsoventral flexion/extension. Additionally, other factors related to the unique morphology of the giraffe's cervicothoracic transition such as neck posture and intervertebral stability are discussed and should be considered in future studies of giraffe neck evolution.
Collapse
Affiliation(s)
- Marilena A Müller
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Luisa J F Merten
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Christine Böhmer
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, 75005, France.,Department für Geo- und Umweltwissenschaften und GeoBio-Center, Ludwig-Maximilians-Universität München, München, 80333, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| |
Collapse
|
22
|
Quinn BL. Digest: Incomplete convergence drives form–function relationship in gliders*. Evolution 2020; 74:2746-2747. [DOI: 10.1111/evo.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022]
|
23
|
Černá Bolfíková B, Evin A, Rozkošná Knitlová M, Loudová M, Sztencel-Jabłonka A, Bogdanowicz W, Hulva P. 3D Geometric Morphometrics Reveals Convergent Character Displacement in the Central European Contact Zone between Two Species of Hedgehogs (Genus Erinaceus). Animals (Basel) 2020; 10:ani10101803. [PMID: 33020407 PMCID: PMC7650550 DOI: 10.3390/ani10101803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Hedgehogs, being insectivores with slow metabolisms, are quite sensitive to temperature and food availability. As a consequence, their ranges have oscillated in relation to past climate changes. Species that have evolved in different regions, but their ranges have shifted and overlapped subsequently, often represent intense competitors as a result of ecological similarities. The present study focuses on this phenomenon in the contact zone in central Europe and adjacent regions, using genetic determination of species and description of size and shape of skull, the morphological structure mirroring many selection pressures related to ecology. While animals living outside of the contact zone show marked differences between the two species, individuals within the contact zone are more alike with a smaller skull size and a convergent jawbone shape. Changes in skull size can be related to inter-species competition and also facilitated by selection pressure, mediated by overpopulated medium-sized predators such as foxes or badgers. Since the function of the lower jaw is mainly connected to feeding, we hypothesize that this pattern is due to the selection to size and shape related to competition for food resources. The present study helps to describe general patterns related to species formation, as well as species responses to anthropogenic environmental changes. Abstract Hedgehogs, as medium-sized plantigrade insectivores with low basal metabolic rates and related defensive anti-predator strategies, are quite sensitive to temperature and ecosystem productivity. Their ranges therefore changed dramatically due to Pleistocene climate oscillations, resulting in allopatric speciation and the subsequent formation of secondary contact zones. Such interactions between closely related species are known to generate strong evolutionary forces responsible for niche differentiation. In this connection, here, we detail the results of research on the phenotypic evolution in the two species of hedgehog present in central Europe, as based on genetics and geometric morphometrics in samples along a longitudinal transect that includes the contact zone between the species. While in allopatry, Erinaceus europaeus is found to have a larger skull than E. roumanicus and distinct cranial and mandibular shapes; the members of the two species in sympatry are smaller and more similar to each other, with a convergent shape of the mandible. The relevant data fail to reveal any major role for either hybridisation or clinal variation. We, therefore, hypothesise that competitive pressure exerted on the studied species does not generate divergent selection sufficient for divergent character displacement to evolve, instead giving rise to convergent selection in the face of resource limitation in the direction of smaller skull size. Considering the multi-factorial constraints present in the relevant adaptive landscape, reduction in size could also be facilitated by predator pressure in ecosystems characterised by mesopredator release and other anthropogenic factors. As the function of the animals’ lower jaw is mainly connected with feeding (in contrast to the cranium whose functions are obviously more complex), we interpret the similarity in shape as reflecting local adaptations to overlapping dietary resources in the two species and hence as convergent character displacement.
Collapse
Affiliation(s)
- Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
- Correspondence: ; Tel.: +420-22438-2497
| | - Allowen Evin
- Institut des Sciences de l’Evolution—Montpellier (ISEM), Univ Montpellier, CNRS, EPHE, IRD, 2 place Eugène Bataillon, CC065, CEDEX 5, 34095 Montpellier, France;
| | - Markéta Rozkošná Knitlová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 00 Prague, Czech Republic; (M.R.K.); (M.L.); (P.H.)
| | - Miroslava Loudová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 00 Prague, Czech Republic; (M.R.K.); (M.L.); (P.H.)
| | - Anna Sztencel-Jabłonka
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland; (A.S.-J.); (W.B.)
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland; (A.S.-J.); (W.B.)
| | - Pavel Hulva
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 00 Prague, Czech Republic; (M.R.K.); (M.L.); (P.H.)
- Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
24
|
Grossnickle DM, Chen M, Wauer JGA, Pevsner SK, Weaver LN, Meng Q, Liu D, Zhang Y, Luo Z. Incomplete convergence of gliding mammal skeletons*. Evolution 2020; 74:2662-2680. [DOI: 10.1111/evo.14094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/22/2023]
Affiliation(s)
| | - Meng Chen
- School of Earth Sciences and Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Palaeobiology and Stratigraphy Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences Nanjing 100864 China
| | - James G. A. Wauer
- Department of Organismal Biology & Anatomy University of Chicago Chicago Illinois 60637
| | - Spencer K. Pevsner
- Department of Organismal Biology & Anatomy University of Chicago Chicago Illinois 60637
- School of Earth Sciences University of Bristol Bristol BS8 1TH United Kingdom
| | - Lucas N. Weaver
- Department of Biology University of Washington Seattle Washington 98195
| | - Qing‐Jin Meng
- Beijing Museum of Natural History Beijing 100050 China
| | - Di Liu
- Beijing Museum of Natural History Beijing 100050 China
| | | | - Zhe‐Xi Luo
- Department of Organismal Biology & Anatomy University of Chicago Chicago Illinois 60637
| |
Collapse
|
25
|
Khalik MZ, Bozkurt E, Schilthuizen M. Morphological parallelism of sympatric cave‐dwelling microsnails of the genus Georissaat Mount Silabur, Borneo (Gastropoda, Neritimorpha, Hydrocenidae). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohd Zacaery Khalik
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden Faculty of Science Leiden University Leiden The Netherlands
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Sarawak Malaysia
| | - Esra Bozkurt
- Naturalis Biodiversity Center Leiden The Netherlands
| | - Menno Schilthuizen
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden Faculty of Science Leiden University Leiden The Netherlands
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah, Jalan UMS Sabah Malaysia
| |
Collapse
|
26
|
Tarkhnishvili D, Gabelaia M, Adriaens D. Phenotypic divergence, convergence and evolution of Caucasian rock lizards (Darevskia). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractPhenotypic evolution can cause either divergent or convergent phenotypic patterns. Even adaptation to the same environment may result in divergence of some elements of phenotype, whereas for other morphological traits it could cause phenotypic convergence. We hypothesize that at least some phenotypic characters diverge monotonically, hence they evolve irreversibly even in very closely related species, and this happens in spite of multiple convergent adaptive patterns. We studied the evolution of phenotype in 13 closely related Caucasian rock lizards (Darevskia), whose phylogenetic relationships are well known. We used head shape and the outlines of three important scales, using geometric morphometrics. We studied the association of the overall head shape, individual principal components of head shape and scale outlines with four predictors: phylogeny, habitat, sex and size. The overall head shape was not correlated with any of these predictors, whereas some principal components were correlated with habitat or phylogeny. Habitat type explained the highest fraction of variation in head shape and anal scale area. The relatedness inferred from the components of phenotype not correlated with habitat was congruent with the phylogenetic tree inferred from molecular data. Although adaptation to local environments may obscure the phylogenetic signal present in phenotype, there are components of phenotype whose evolution is irreversible.
Collapse
Affiliation(s)
- David Tarkhnishvili
- Ilia State University, Institute of Ecology, School of Natural Sciences and Engineering, Kakutsa Cholokashvili Ave 3/5, Tbilisi, Georgia
| | - Mariam Gabelaia
- Ilia State University, Institute of Ecology, School of Natural Sciences and Engineering, Kakutsa Cholokashvili Ave 3/5, Tbilisi, Georgia
| | - Dominique Adriaens
- Ghent University, Evolutionary Morphology of Vertebrates, K. L. Ledeganckstraat 35, Gent, Belgium
| |
Collapse
|
27
|
Eliason CM, Maia R, Parra JL, Shawkey MD. Signal evolution and morphological complexity in hummingbirds (Aves:
Trochilidae
). Evolution 2020; 74:447-458. [DOI: 10.1111/evo.13893] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Chad M. Eliason
- Grainger Bioinformatics Center Field Museum of Natural History Chicago
| | - Rafael Maia
- Grainger Bioinformatics Center Field Museum of Natural History Chicago
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología Universidad de Antioquia Medellín Colombia
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology University of Ghent 9000 Ghent Belgium
| |
Collapse
|
28
|
A new, fast method to search for morphological convergence with shape data. PLoS One 2019; 14:e0226949. [PMID: 31881075 PMCID: PMC6934287 DOI: 10.1371/journal.pone.0226949] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/09/2019] [Indexed: 12/04/2022] Open
Abstract
Morphological convergence is an intensely studied macroevolutionary phenomenon. It refers to the morphological resemblance between phylogenetically distant taxa. Currently available methods to explore evolutionary convergence either: rely on the analysis of the phenotypic resemblance between sister clades as compared to their ancestor, fit different evolutionary regimes to different parts of the tree to see whether the same regime explains phenotypic evolution in phylogenetically distant clades, or assess deviations from the congruence between phylogenetic and phenotypic distances. We introduce a new test for morphological convergence working directly with non-ultrametric (i.e. paleontological) as well as ultrametric phylogenies and multivariate data. The method (developed as the function search.conv within the R package RRphylo) tests whether unrelated clades are morphologically more similar to each other than expected by their phylogenetic distance. It additionally permits using known phenotypes as the most recent common ancestors of clades, taking full advantage of fossil information. We assessed the power of search.conv and the incidence of false positives by means of simulations, and then applied it to three well-known and long-discussed cases of (purported) morphological convergence: the evolution of grazing adaptation in the mandible of ungulates with high-crowned molars, the evolution of mandibular shape in sabertooth cats, and the evolution of discrete ecomorphs among anoles of Caribbean islands. The search.conv method was found to be powerful, correctly identifying simulated cases of convergent morphological evolution in 95% of the cases. Type I error rate is as low as 4–6%. We found search.conv is some three orders of magnitude faster than a competing method for testing convergence.
Collapse
|
29
|
Hoyal Cuthill JF, Guttenberg N, Ledger S, Crowther R, Huertas B. Deep learning on butterfly phenotypes tests evolution's oldest mathematical model. SCIENCE ADVANCES 2019; 5:eaaw4967. [PMID: 31453326 PMCID: PMC6693915 DOI: 10.1126/sciadv.aaw4967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learning to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the polymorphic mimicry complex of Heliconius erato and Heliconius melpomene. Euclidean phenotypic distances, calculated using a deep convolutional triplet network, demonstrate significant convergence between interspecies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology's oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analyses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quantitative tests of evolutionary hypotheses previously only testable subjectively.
Collapse
Affiliation(s)
- Jennifer F. Hoyal Cuthill
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Institute of Analytics and Data Science and School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Nicholas Guttenberg
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Sophie Ledger
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Robyn Crowther
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Blanca Huertas
- Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
30
|
Thacker CE, Gkenas C. Morphometric convergence among European sand gobies in freshwater (Gobiiformes: Gobionellidae). Ecol Evol 2019; 9:8087-8103. [PMID: 31380073 PMCID: PMC6662260 DOI: 10.1002/ece3.5375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 11/12/2022] Open
Abstract
The five genera of sand gobies inhabit the seas and freshwaters of Europe and western Asia and occupy habitats ranging from fully marine to exclusively freshwater. In this study, we use geometric morphometrics to quantify body shape among sand gobies, in order to investigate how shape has evolved and how it is related to habitat. We also compare body shape between preserved museum specimens and fresh specimens, to determine whether or not fixation and storage in ethanol introduce detectable bias. We confirm that the fixed specimens exhibit significant shape changes as compared to fresh specimens, and so, we perform the bulk of our analyses exclusively on fixed specimens. We find that Economidichthys, Orsinigobius, and Pomatoschistus occupy distinct regions of morphospace. Knipowitschia and Ninnigobius have intermediate forms that overlap with Pomatoschistus and Orsinigobius, but not Economidichthys. This pattern is also in rough accordance with their habitats: Pomatoschistus is fully marine, Economidichthys fully freshwater, and the others fresh with some brackish tolerance. We augment a recent phylogeny of sand gobies with data for P. quagga and interpret morphometric shape change on that tree. We then evaluate convergence in form among disparate lineages of freshwater species by constructing a phylomorphospace and applying pattern-based (convevol) measures of convergence. We find that freshwater taxa occupy a mostly separate region of morphospace from marine taxa and exhibit significant convergence in form. Freshwater taxa are characterized by relatively larger heads and stockier bodies than their marine relatives, potentially due to a common pattern of heterochronic size reduction.
Collapse
Affiliation(s)
- Christine E. Thacker
- Vertebrate Zoology, Collections and ResearchSanta Barbara Museum of Natural HistorySanta BarbaraCalifornia
- Research and Collections, Section of IchthyologyNatural History Museum of Los Angeles CountyLos AngelesCalifornia
| | - Christos Gkenas
- Faculdade de CiênciasMARE, Centro de Ciências do Mar e do AmbienteUniversidade de LisboaLisboaPortugal
- Laboratory of ZoologyDepartment of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
| |
Collapse
|
31
|
Martinez CM, Wainwright PC. Extending the Geometric Approach for Studying Biomechanical Motions. Integr Comp Biol 2019; 59:684-695. [DOI: 10.1093/icb/icz104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Whether it is swimming, walking, eating, or jumping, motions are a fundamental way in which organisms interact with their environment. Understanding how morphology contributes to motion is a primary focus of kinematic research and is necessary for gaining insights into the evolution of functional systems. However, an element that is largely missing from traditional analyses of motion is the spatial context in which they occur. We explore an application of geometric morphometrics (GM) for analyzing and comparing motions to evaluate the outputs of biomechanical linkage models. We focus on a common model for oral jaw mechanics of perciform fishes, the fourbar linkage, using GM to summarize motion as a trajectory of shape change. Two traits derived from trajectories capture the total kinesis generated by a linkage (trajectory length) and the kinematic asynchrony (KA) of its mobile components (trajectory nonlinearity). Oral jaw fourbar data from two subfamilies of Malagasy cichlids were used to generate form–function landscapes, describing broad features of kinematic diversity. Our results suggest that kinesis and KA have complex relationships with fourbar morphology, each displaying a pattern in which different shapes possess equivalent kinematic trait values, known as many-to-one mapping of form-to-function. Additionally, we highlight the observation that KA captures temporal differences in the activation of motion components, a feature of kinesis that has long been appreciated but was difficult to measure. The methods used here to study fourbar linkages can also be applied to more complex biomechanical models and broadly to motions of live organisms. We suggest that they provide a suitable alternative to traditional approaches for evaluating linkage function and kinematics.
Collapse
Affiliation(s)
- C M Martinez
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - P C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
32
|
Simon MN, Brandt R, Kohlsdorf T, Arnold SJ. Bite performance surfaces of three ecologically divergent Iguanidae lizards: relationships with lower jaw bones. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Traits that interact to perform an ecologically relevant function are expected to be under multivariate non-linear selection. Using the lower jaw morphology as a biomechanical model, we test the hypothesis that lower jaw bones of lizards are subjected to stabilizing and correlational selection, associated with mechanical advantage and maximum bite force. We used three closely related tropidurine species that differ in size, head shape and microhabitat: Eurolophosaurus nanuzae, Tropidurus hispidus and Tropidurus semitaeniatus. We predicted a common pattern of correlational selection on bones that are part of in-levers or part of the out-lever of the lower jaw. The predicted pattern was found in E. nanuzae and T. hispidus, but this could not be shown to be statistically significant. For T. semitaeniatus, we found significant disruptive selection on a contrast involving the surangular, and also significant directional selection on linear combinations of traits in all species. The results indicate that the non-linear selection on lower jaw bones does not reflect an optimum to enhance mechanical advantage in all species. Divergent functional demands and specific ecological contexts of species seem relevant in shaping patterns of selection on morphology.
Collapse
Affiliation(s)
- Monique Nouailhetas Simon
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, Butantã, São Paulo, Brazil
- Department of Integrative Biology, Oregon State University, Corvallis, OR USA
| | - Renata Brandt
- Department of Biology, FFCLRP, University of São Paulo, Monte Alegre, Ribeirão Preto, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Monte Alegre, Ribeirão Preto, Brazil
| | - Stevan J Arnold
- Department of Integrative Biology, Oregon State University, Corvallis, OR USA
| |
Collapse
|
33
|
Noto CR, Drumheller SK, Adams TL, Turner AH. An Enigmatic Small Neosuchian Crocodyliform from the Woodbine Formation of Texas. Anat Rec (Hoboken) 2019; 303:801-812. [PMID: 31173481 DOI: 10.1002/ar.24174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/05/2022]
Abstract
New discoveries at the Arlington Archosaur Site (AAS), a Cenomanian (Late Cretaceous) locality in north-central Texas, are filling gaps in our knowledge of mid-Cretaceous Appalachian ecosystems, which remain poorly characterized. The AAS is notable because it preserves a diverse crocodyliform record. As seen in other sites that preserve four or more crocodyliform taxa, the species present at the AAS exhibit different snout shapes and body sizes, indicating that this high diversity of sympatric species was likely sustainable due to niche partitioning. Here we describe Scolomastax sahlsteini gen. et sp. nov., a new species of crocodyliform from the AAS, currently known from a partial right mandibular ramus. This species differs from other crocodyliforms in possessing features associated with durophagy or omnivory, including a shortened mandible, reduced tooth count, heterodonty, a dorsally expanded surangular, and enlarged attachments for jaw adductor muscles. Our phylogenetic analysis places this new taxon within Eusuchia as a member of Paralligatoridae and sister taxon to Paralligator gradilifrons. Scolomastax sahlsteini extends the record of paralligatorids into the Late Cretaceous of North America. This discovery represents the first appearance of this clade on the poorly known landmass of Appalachia, supporting a biogeographic connection between North America and Asia in the Early Cretaceous prior to completion of the Western Interior Seaway. However, relationships among other endemic crocodyliforms and tree instability within Paralligatoridae suggest further analysis is needed to resolve phylogenetic and biogeographic relationships (http://zoobank.org/urn:lsid:zoobank.org:pub:DC114471-6687-4BB5-8FAE-96F7278B1DAF). Anat Rec, 303:801-812, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher R Noto
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, Wisconsin
| | - Stephanie K Drumheller
- Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville, Tennessee
| | | | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
34
|
Gray JA, Hutchinson MN, Jones ME. Exceptional Disparity in Australian Agamid Lizards is a Possible Result of Arrival into Vacant Niche. Anat Rec (Hoboken) 2019; 302:1536-1543. [DOI: 10.1002/ar.24096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jaimi A. Gray
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Mark N. Hutchinson
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
- South Australian Museum Adelaide South Australia Australia
| | - Marc E.H. Jones
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
- South Australian Museum Adelaide South Australia Australia
- Department of Earth Sciences The Natural History Museum London UK
| |
Collapse
|
35
|
Bergmann PJ, Morinaga G. The convergent evolution of snake‐like forms by divergent evolutionary pathways in squamate reptiles*. Evolution 2018; 73:481-496. [DOI: 10.1111/evo.13651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Philip J. Bergmann
- Department of Biology Clark University 950 Main Street Worcester Massachusetts 01610
| | - Gen Morinaga
- Department of Biology Clark University 950 Main Street Worcester Massachusetts 01610
| |
Collapse
|
36
|
Ross CF, Porro LB, Herrel A, Evans SE, Fagan MJ. Bite force and cranial bone strain in four species of lizards. J Exp Biol 2018; 221:jeb.180240. [DOI: 10.1242/jeb.180240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022]
Abstract
In vivo bone strain data provide direct evidence of strain patterns in the cranium during biting. Compared to mammals, in vivo bone strains in lizard skulls are poorly documented. This paper presents strain data from the skulls of Anolis equestris, Gekko gecko, Iguana iguana and Salvator merianae during transducer biting. Analysis of variance was used to investigate effects of bite force, bite point, diet, cranial morphology and cranial kinesis on strain magnitudes. Within individuals the most consistent determinants of variance in bone strain magnitudes are gage location and bite point, with the importance of bite force varying between individuals. Inter-site variance in strain magnitudes—strain gradient—is present in all individuals, and varies with bite point. Between individuals within species, variance in strain magnitude is driven primarily by variation in bite force, not gage location or bite point, suggesting that inter-individual variation in patterns of strain magnitude is minimal. Between species, variation in strain magnitudes is significantly impacted by bite force and species membership, as well as by interactions between gage location, species, and bite point. Independent of bite force, species differences in cranial strain magnitudes may reflect selection for different cranial morphology in relation to feeding function, but what these performance criteria are is not clear. The relatively low strain magnitudes in Iguana and Uromastyx compared to other lizards may be related to their herbivorous diet. Cranial kinesis and the presence or absence of postorbital and supratemporal bars are not important determinants of inter-specific variation in strain magnitudes.
Collapse
Affiliation(s)
- Callum F. Ross
- Organismal Biology & Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Laura B. Porro
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Anthony Herrel
- Sorbonne Universités, Département Adaptations du Vivant, UMR 7179, C.N.R.S/M.N.H.N., Paris, France
| | - Susan E. Evans
- Department of Cell and Developmental Biology, UCL, University College London, London, WC1E 6BT, UK
| | - Michael J. Fagan
- School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
37
|
Atkins ZS, Clemann N, Schroder M, Chapple DG, Davis NE, Robinson WA, Wainer J, Robert KA. Consistent temporal variation in the diet of an endangered alpine lizard across two south-eastern Australian sky-islands. AUSTRAL ECOL 2017. [DOI: 10.1111/aec.12572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zak S. Atkins
- Department of Ecology, Environment and Evolution; La Trobe University; Bundoora Victoria 3086 Australia
| | - Nick Clemann
- Arthur Rylah Institute for Environmental Research; Department of Environment, Land, Water & Planning; Heidelberg Victoria Australia
| | - Mellesa Schroder
- National Parks and Wildlife Service; Snowy Mountains Region; Jindabyne New South Wales Australia
| | - David G. Chapple
- School of Biological Sciences; Monash University; Clayton Victoria Australia
| | - Naomi E. Davis
- School of BioSciences; The University of Melbourne; Parkville Victoria Australia
| | - Wayne A. Robinson
- School of Environmental Sciences; Charles Sturt University; Thurgoona New South Wales Australia
| | - John Wainer
- Centre for AgriBioscience; Department of Economic Development, Jobs, Transport and Resources; La Trobe University; Bundoora Victoria Australia
| | - Kylie A. Robert
- Department of Ecology, Environment and Evolution; La Trobe University; Bundoora Victoria 3086 Australia
| |
Collapse
|
38
|
Functional convergence and phenotypic divergence in two specialist species of pine-associated ladybirds. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Simonsen MK, Siwertsson A, Adams CE, Amundsen PA, Præbel K, Knudsen R. Allometric trajectories of body and head morphology in three sympatric Arctic charr ( Salvelinus alpinus (L.)) morphs. Ecol Evol 2017; 7:7277-7289. [PMID: 28944016 PMCID: PMC5606865 DOI: 10.1002/ece3.3224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.
Collapse
Affiliation(s)
- Marianne Knutsdotter Simonsen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Anna Siwertsson
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Colin Ean Adams
- Scottish Centre for Ecology and the Natural Environment IBAHCM, University of Glasgow Glasgow UK
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Kim Præbel
- Faculty of Biosciences, Fisheries and Economics The Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Rune Knudsen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|
40
|
Serb JM, Sherratt E, Alejandrino A, Adams DC. Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae). J Evol Biol 2017; 30:1736-1747. [DOI: 10.1111/jeb.13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- J. M. Serb
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
| | - E. Sherratt
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
- Department of Genetics and Evolution School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - A. Alejandrino
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
- Department of Biology Whittier College Whittier CA USA
| | - D. C. Adams
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
- Department of Statistics Iowa State University Ames IA USA
| |
Collapse
|
41
|
Morinaga G, Bergmann PJ. Convergent body shapes have evolved via deterministic and historically contingent pathways in Lerista lizards. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
42
|
Speed MP, Arbuckle K. Quantification provides a conceptual basis for convergent evolution. Biol Rev Camb Philos Soc 2017; 92:815-829. [PMID: 26932796 PMCID: PMC6849873 DOI: 10.1111/brv.12257] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/26/2022]
Abstract
While much of evolutionary biology attempts to explain the processes of diversification, there is an important place for the study of phenotypic similarity across life forms. When similar phenotypes evolve independently in different lineages this is referred to as convergent evolution. Although long recognised, evolutionary convergence is receiving a resurgence of interest. This is in part because new genomic data sets allow detailed and tractable analysis of the genetic underpinnings of convergent phenotypes, and in part because of renewed recognition that convergence may reflect limitations in the diversification of life. In this review we propose that although convergent evolution itself does not require a new evolutionary framework, none the less there is room to generate a more systematic approach which will enable evaluation of the importance of convergent phenotypes in limiting the diversity of life's forms. We therefore propose that quantification of the frequency and strength of convergence, rather than simply identifying cases of convergence, should be considered central to its systematic comprehension. We provide a non-technical review of existing methods that could be used to measure evolutionary convergence, bringing together a wide range of methods. We then argue that quantification also requires clear specification of the level at which the phenotype is being considered, and argue that the most constrained examples of convergence show similarity both in function and in several layers of underlying form. Finally, we argue that the most important and impressive examples of convergence are those that pertain, in form and function, across a wide diversity of selective contexts as these persist in the likely presence of different selection pressures within the environment.
Collapse
Affiliation(s)
- Michael P. Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life SciencesUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| | - Kevin Arbuckle
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life SciencesUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| |
Collapse
|
43
|
Botton-Divet L, Cornette R, Houssaye A, Fabre AC, Herrel A. Swimming and running: a study of the convergence in long bone morphology among semi-aquatic mustelids (Carnivora: Mustelidae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Hipsley CA, Müller J. Developmental dynamics of ecomorphological convergence in a transcontinental lizard radiation. Evolution 2017; 71:936-948. [DOI: 10.1111/evo.13186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Christy A. Hipsley
- School of BioSciences University of Melbourne Parkville VIC 3010 Australia
- Museum Victoria GPO Box 666 Melbourne VIC 3001 Australia
- Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Invalidenstr. 43 10115 Berlin Germany
| | - Johannes Müller
- Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Invalidenstr. 43 10115 Berlin Germany
| |
Collapse
|
45
|
Sherratt E, Alejandrino A, Kraemer AC, Serb JM, Adams DC. Trends in the sand: Directional evolution in the shell shape of recessing scallops (Bivalvia: Pectinidae). Evolution 2016; 70:2061-73. [DOI: 10.1111/evo.12995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Emma Sherratt
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011
- Division of Evolution, Ecology and Genetics The Australian National University Canberra ACT 2601 Australia
| | - Alvin Alejandrino
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011
| | - Andrew C. Kraemer
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011
| | - Jeanne M. Serb
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011
| | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa 50011
- Department of Statistics Iowa State University Ames Iowa 50011
| |
Collapse
|
46
|
deVries MS, Stock BC, Christy JH, Goldsmith GR, Dawson TE. Specialized morphology corresponds to a generalist diet: linking form and function in smashing mantis shrimp crustaceans. Oecologia 2016; 182:429-42. [PMID: 27312263 DOI: 10.1007/s00442-016-3667-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Many animals are considered to be specialists because they have feeding structures that are fine-tuned for consuming specific prey. For example, "smasher" mantis shrimp have highly specialized predatory appendages that generate forceful strikes to break apart hard-shelled prey. Anecdotal observations suggest, however, that the diet of smashers may include soft-bodied prey as well. Our goal was to examine the diet breadth of the smasher mantis shrimp, Neogonodactylus bredini, to determine whether it has a narrow diet of hard-shelled prey. We combined studies of prey abundance, feeding behavior, and stable isotope analyses of diet in both seagrass and coral rubble to determine if N. bredini's diet was consistent across different habitat types. The abundances of hard-shelled and soft-bodied prey varied between habitats. In feeding experiments, N. bredini consumed both prey types. N. bredini consumed a range of different prey in the field as well and, unexpectedly, the stable isotope analysis demonstrated that soft-bodied prey comprised a large proportion (29-53 %) of the diet in both habitats. Using a Bayesian mixing model framework (MixSIAR), we found that this result held even when we used uninformative, or generalist, priors and informative priors reflecting a specialist diet on hard-shelled prey and prey abundances in the field. Thus, contrary to expectation, the specialized feeding morphology of N. bredini corresponds to a broad diet of both hard-shelled and soft-bodied prey. Using multiple lines of study to describe the natural diets of other presumed specialists may demonstrate that specialized morphology often broadens rather than narrows diet breadth.
Collapse
Affiliation(s)
- Maya S deVries
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA. .,Scripps Institution of Oceanography, University of California, 9500 Gilman Drive # 0202, La Jolla, San Diego, CA, 92093-0202, USA.
| | - Brian C Stock
- Scripps Institution of Oceanography, University of California, 9500 Gilman Drive # 0202, La Jolla, San Diego, CA, 92093-0202, USA
| | - John H Christy
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, República de Panamá
| | - Gregory R Goldsmith
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.,Ecosystem Fluxes Group, Laboratory for Atmospheric Chemistry, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Outomuro D, Ángel-Giraldo P, Corral-Lopez A, Realpe E. Multitrait aposematic signal in Batesian mimicry. Evolution 2016; 70:1596-608. [PMID: 27241010 DOI: 10.1111/evo.12963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/28/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022]
Abstract
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and parasitized by Polythoridae damselflies: wing color, wing shape, and flight style. The study species have wings with a subapical white patch, considered the aposematic signal, and a more apical black patch. The main predators are VS-birds, visually more sensitive to violet than to ultraviolet wavelengths (UVS-birds). The white patches, compared to the black patches, were closer in the bird color space, with higher overlap for VS-birds than for UVS-birds. Using a discriminability index for bird vision, the white patches were more similar between the mimics and the model than the black patches. The wing shape of the mimics was closer to the model in the morphospace, compared to other outgroup damselflies. The wing-beat frequency was similar among mimics and the model, and different from another outgroup damselfly. Multitrait aposematic signals involving morphology and locomotion may favor the evolution of mimicry rings and the success of Batesian mimics by improving signal effectiveness toward predators.
Collapse
Affiliation(s)
- David Outomuro
- Laboratorio de Zoología y Ecología Acuática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia. .,Current address: Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D 75236, Uppsala, Sweden.
| | - Pedro Ángel-Giraldo
- Laboratorio de Zoología y Ecología Acuática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Alberto Corral-Lopez
- Department of Ethology/Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691, Stockholm, Sweden
| | - Emilio Realpe
- Laboratorio de Zoología y Ecología Acuática, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
48
|
Abstract
Bird beaks are textbook examples of ecological adaptation to diet, but their shapes are also controlled by genetic and developmental histories. To test the effects of these factors on the avian craniofacial skeleton, we conducted morphometric analyses on raptors, a polyphyletic group at the base of the landbird radiation. Despite common perception, we find that the beak is not an independently targeted module for selection. Instead, the beak and skull are highly integrated structures strongly regulated by size, with axes of shape change linked to the actions of recently identified regulatory genes. Together, size and integration account for almost 80% of the shape variation seen between different species to the exclusion of morphological dietary adaptation. Instead, birds of prey use size as a mechanism to modify their feeding ecology. The extent to which shape variation is confined to a few major axes may provide an advantage in that it facilitates rapid morphological evolution via changes in body size, but may also make raptors especially vulnerable when selection pressures act against these axes. The phylogenetic position of raptors suggests that this constraint is prevalent in all landbirds and that breaking the developmental correspondence between beak and braincase may be the key novelty in classic passerine adaptive radiations.
Collapse
|
49
|
Friedman ST, Price SA, Hoey AS, Wainwright PC. Ecomorphological convergence in planktivorous surgeonfishes. J Evol Biol 2016; 29:965-78. [DOI: 10.1111/jeb.12837] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 02/04/2023]
Affiliation(s)
- S. T. Friedman
- Department of Evolution and Ecology University of California Davis CA USA
| | - S. A. Price
- Department of Evolution and Ecology University of California Davis CA USA
| | - A. S. Hoey
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - P. C. Wainwright
- Department of Evolution and Ecology University of California Davis CA USA
| |
Collapse
|
50
|
Suárez-Tovar CM, Sarmiento CE. Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species. J Evol Biol 2016; 29:690-703. [PMID: 26779975 DOI: 10.1111/jeb.12830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/11/2015] [Accepted: 01/10/2016] [Indexed: 11/27/2022]
Abstract
Migration is a significant trait of the animal kingdom that can impose a strong selective pressure on several structures to overcome the amount of energy that the organism invests in this particular behaviour. Wing linear dimensions and planform have been a traditional focus in the study of flying migratory species; however, other traits could also influence aerodynamic performance. We studied the differences in several flight-related traits of migratory and nonmigratory Libellulid species in a phylogenetic context to assess their response to migratory behaviour. Wings were compared by linear measurements, shape, surface corrugations and microtrichia number. Thorax size and pilosity were also compared. Migratory species have larger and smoother wings, a larger anal lobe that is reached through an expansion of the discoidal region, and longer and denser thoracic pilosity. These differences might favour gliding as an energy-saving displacement strategy. Most of the changes were identified in the hind wings. No differences were observed for the thorax linear dimensions, wetted aspect ratio, some wing corrugations or the wing microtrichiae number. Similar changes in the hind wing are present in clades where migration evolved. Our results emphasize that adaptations to migration through flight may extend to characteristics beyond the wing planform and that some wing characteristics in libellulids converge in response to migratory habits, whereas other closely related structures remain virtually unchanged. Additionally, we concluded that despite a close functional association and similar selective pressures on a structure, significant differences in the magnitude of the response may be present in its components.
Collapse
Affiliation(s)
- C M Suárez-Tovar
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - C E Sarmiento
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|