1
|
Haavisto V, Landry Z, Pontrelli S. High-throughput profiling of metabolic responses to exogenous nutrients in Synechocystis sp. PCC 6803. mSystems 2024; 9:e0022724. [PMID: 38534128 PMCID: PMC11019784 DOI: 10.1128/msystems.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cyanobacteria fix carbon dioxide and release carbon-containing compounds into the wider ecosystem, yet they are sensitive to small metabolites that may impact their growth and physiology. Several cyanobacteria can grow mixotrophically, but we currently lack a molecular understanding of how specific nutrients may alter the compounds they release, limiting our knowledge of how environmental factors might impact primary producers and the ecosystems they support. In this study, we develop a high-throughput phytoplankton culturing platform and identify how the model cyanobacterium Synechocystis sp. PCC 6803 responds to nutrient supplementation. We assess growth responses to 32 nutrients at two concentrations, identifying 15 that are utilized mixotrophically. Seven nutrient sources significantly enhance growth, while 19 elicit negative growth responses at one or both concentrations. High-throughput exometabolomics indicates that oxidative stress limits Synechocystis' growth but may be alleviated by antioxidant metabolites. Furthermore, glucose and valine induce strong changes in metabolite exudation in a possible effort to correct pathway imbalances or maintain intracellular elemental ratios. This study sheds light on the flexibility and limits of cyanobacterial physiology and metabolism, as well as how primary production and trophic food webs may be modulated by exogenous nutrients.IMPORTANCECyanobacteria capture and release carbon compounds to fuel microbial food webs, yet we lack a comprehensive understanding of how external nutrients modify their behavior and what they produce. We developed a high throughput culturing platform to evaluate how the model cyanobacterium Synechocystis sp. PCC 6803 responds to a broad panel of externally supplied nutrients. We found that growth may be enhanced by metabolites that protect against oxidative stress, and growth and exudate profiles are altered by metabolites that interfere with central carbon metabolism and elemental ratios. This work contributes a holistic perspective of the versatile response of Synechocystis to externally supplied nutrients, which may alter carbon flux into the wider ecosystem.
Collapse
Affiliation(s)
- Vilhelmiina Haavisto
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Zachary Landry
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Cuevas M, Francisco I, Díaz-González F, Diaz M, Quatrini R, Beamud G, Pedrozo F, Temporetti P. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia. Front Microbiol 2024; 15:1335978. [PMID: 38410393 PMCID: PMC10895001 DOI: 10.3389/fmicb.2024.1335978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Lake Caviahue (37° 50 'S and 71° 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH ~ 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
Collapse
Affiliation(s)
- Mayra Cuevas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Issotta Francisco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Díaz-González
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mónica Diaz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Fernando Pedrozo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
3
|
Schenone L, Balseiro E, Modenutti B. Light dependence in the phototrophy-phagotrophy balance of constitutive and non-constitutive mixotrophic protists. Oecologia 2022; 200:295-306. [PMID: 35962828 DOI: 10.1007/s00442-022-05226-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Mixotrophic protists display contrasting nutritional strategies and are key groups connecting planktonic food webs. They comprise constitutive mixotrophs (CMs) that have an innate photosynthetic ability and non-constitutive mixotrophs (NCMs) that acquire it from their prey. We modelled phototrophy and phagotrophy of two mixotrophic protists as a function of irradiance and prey abundance. We hypothesised that differences in their physiology (constitutive versus non-constitutive mixotrophy) can result in different responses to light gradients. We fitted the models with primary production and bacterivory data from laboratory and field experiments with the nanoflagellate Chrysochromulina parva (CM) and the ciliate Ophrydium naumanni (NCM) from north Andean Patagonian lakes. We found a non-monotonic response of phototrophy and phagotrophy to irradiance in both mixotrophs, which was successfully represented by our models. Maximum values for phototrophy and phagotrophy were found at intermediate irradiance coinciding with the light at the deep chlorophyll maxima in these lakes. At lower and higher irradiances, we found a decoupling between phototrophy and phagotrophy in the NCM while these functions were more coupled in the CM. Our modelling approach revealed the difference between both mixotrophic functional types on the balance between their nutritional strategies under different light scenarios. Thus, our proposed models can be applied to account how changing environmental conditions affect both primary and secondary production within the planktonic microbial food web.
Collapse
Affiliation(s)
- Luca Schenone
- Laboratorio de Limnología, INIBIOMA-CONICET, Universidad Nacional del Comahue. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - Esteban Balseiro
- Laboratorio de Limnología, INIBIOMA-CONICET, Universidad Nacional del Comahue. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Beatriz Modenutti
- Laboratorio de Limnología, INIBIOMA-CONICET, Universidad Nacional del Comahue. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
4
|
Devotta DA, Kent AD, Nelson DM, Walsh PB, Fraterrigo JM, Hu FS. Effects of alder- and salmon-derived nutrients on aquatic bacterial community structure and microbial community metabolism in subarctic lakes. Oecologia 2022; 199:711-724. [PMID: 35739283 DOI: 10.1007/s00442-022-05207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2022] [Indexed: 12/01/2022]
Abstract
Alder (Alnus spp.) and Pacific salmon (Oncorhynchus spp.) provide key nutrient subsidies to freshwater systems. In southwestern Alaska, alder-derived nutrients (ADNs) are increasing as alder cover expands in response to climate warming, while climate change and habitat degradation are reducing marine-derived nutrients (MDNs) in salmon-spawning habitats. To assess the relative influences of ADN and MDN on aquatic microbial community structure and function, we analyzed lake chemistry, bacterial community structure, and microbial metabolism in 13 lakes with varying alder cover and salmon abundance in southwestern Alaska. We conducted bioassays to determine microbial nutrient limitation and physical factors modulating microbial response to nutrient inputs (+N, +P and +NP treatments). Seasonal shifts in bacterial community structure (F = 7.47, P < 0.01) coincided with changes in lake nitrogen (N) and phosphorus (P) concentrations (r2 = 0.19 and 0.16, both P < 0.05), and putrescine degradation (r2 = 0.13, P = 0.06), suggesting the influx and microbial use of MDN. Higher microbial metabolism occurred in summer than spring, coinciding with salmon runs. Increased microbial metabolism occurred in lakes where more salmon spawned. Microbial metabolic activity was unrelated to alder cover, likely because ADN provides less resource diversity than MDN. When nutrients were added to spring samples, there was greater substrate use by microbial communities from lakes with elevated Chl a concentrations and large relative catchment areas (β estimates for all treatments > 0.56, all P < 0.07). Thus, physical watershed and lake features mediate the effects of nutrient subsidies on aquatic microbial metabolic activity.
Collapse
Affiliation(s)
- Denise A Devotta
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, 61801, USA.
| | - Angela D Kent
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, 61801, USA.,Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - David M Nelson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Patrick B Walsh
- Togiak National Wildlife Refuge, U.S. Fish and Wildlife Service, Dillingham, AK, 99576, USA
| | - Jennifer M Fraterrigo
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, 61801, USA.,Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Feng Sheng Hu
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, 61801, USA.,Department of Plant Biology, Department of Geology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Trombetta T, Vidussi F, Roques C, Scotti M, Mostajir B. Marine Microbial Food Web Networks During Phytoplankton Bloom and Non-bloom Periods: Warming Favors Smaller Organism Interactions and Intensifies Trophic Cascade. Front Microbiol 2020; 11:502336. [PMID: 33193116 PMCID: PMC7644461 DOI: 10.3389/fmicb.2020.502336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
Microbial food web organisms are at the base of the functioning of pelagic ecosystems and support the whole marine food web. They are very reactive to environmental changes and their interactions are modified in response to different productive periods such as phytoplankton bloom and non-bloom as well as contrasted climatic years. To study ecological associations, identify potential interactions between microorganisms and study the structure of the microbial food web in coastal waters, a weekly monitoring was carried out in the Thau Lagoon on the French Mediterranean coast. The monitoring lasted from winter to late spring during two contrasting climatic years, a typical Mediterranean (2015) and a year with an extreme warm winter (2016). Correlation networks comprising 110 groups/taxa/species were constructed to characterize potential possible interactions between the microorganisms during bloom and non-bloom periods. Complex correlation networks during the bloom and dominated by negative intraguild correlations and positive correlations of phytoplankton with bacteria. Such pattern can be interpreted as a dominance of competition and mutualism. In contrast, correlation networks during the non-bloom period were less complex and mostly dominated by tintinnids associations with bacteria mostly referring to potential feeding on bacteria, which suggests a shift of biomass transfer from phytoplankton-dominated food webs during bloom to more bacterioplankton-based food webs during non-bloom. Inter-annual climatic conditions significantly modified the structure of microbial food webs. The warmer year favored relationships among smaller group/taxa/species at the expense of large phytoplankton and ciliates, possibly due to an intensification of the trophic cascade with a potential shift in energy circulation through microbial food web. Our study compares a typical Mediterranean spring with another mimicking the prospected intensification of global warming; if such consideration holds true, the dominance of future coastal marine ecosystems will be shifted from the highly productive herbivorous food web to the less productive microbial food web.
Collapse
Affiliation(s)
- Thomas Trombetta
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Francesca Vidussi
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Cécile Roques
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Marco Scotti
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Behzad Mostajir
- Marine Biodiversity, Exploitation and Conservation, Centre National de la Recherche Scientifique, Institut Français de Recherche pour l'Exploitation de la Mer, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Dispersal mitigates bacterial dominance over microalgal competitor in metacommunities. Oecologia 2020; 193:677-687. [PMID: 32648114 DOI: 10.1007/s00442-020-04707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
Ecological theory suggests that a combination of local and regional factors regulate biodiversity and community functioning in metacommunities. The relative importance of different factors structuring communities likely changes over successional time, but to date this concept is scarcely documented. In addition, the few studies describing successional dynamics in metacommunity regulation have only focused on a single group of organisms. Here, we report results of an experimental study testing the effect size of initial local community composition and dispersal between local patches on community dynamics of benthic microalgae and their associated bacteria over community succession. Our results show that over time dispersal outweighed initial effects of community composition on microalgal evenness and biomass, microalgal β-diversity, and the ratio of bacteria to microalgae. At the end of the experiment (ca. 20 microalgae generations), dispersal significantly decreased microalgal evenness and β-diversity by promoting one regionally superior competitor. Dispersal also decreased the ratio of bacteria to microalgae, while it significantly increased microalgal biomass. These results suggest that the dispersal-mediated establishment of a dominant and superior microalgae species prevented bacteria from gaining competitive advantage over the autotrophs in these metacommunities, ultimately maintaining the provision of autotrophic biomass. Our study emphasizes the importance of time for dispersal to be a relevant community-structuring mechanism. Moreover, we highlight the need for considering multiple competitors in complex metacommunity systems to properly pinpoint the consequences of local change in dominance through dispersal for metacommunity function.
Collapse
|