1
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Borzutzky A, Rauter I, Fried A, Rachid R, McDonald DR, Hammarstrom L, Grimbacher B, Abraham RS, Geha RS. Defective TLR9-driven STAT3 activation in B cells of patients with CVID. Clin Immunol 2018; 197:40-44. [PMID: 30145329 DOI: 10.1016/j.clim.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022]
Abstract
B cell activation by Toll-like receptor 9 (TLR9) ligands is dependent on STAT3 and is important for optimal antibody responses to microbial antigens. B cells from patients with common variable immune deficiency (CVID) have impaired proliferation and differentiation in response to the TLR9 ligand CpG, despite normal levels of TLR9 expression. We demonstrate that CpG-driven STAT3 phosphorylation, but not activation of NFκB and p38, is selectively impaired in B cells from CVID patients. These results suggest that defective STAT3 activation contributes to the defective TLR9 and antibody response of B cells in CVID.
Collapse
Affiliation(s)
- Arturo Borzutzky
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ingrid Rauter
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ari Fried
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rima Rachid
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Douglas R McDonald
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Bodo Grimbacher
- Center of Chronic Immunodeficiency, Freiburg University Medical Center, Freiburg, Germany
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, United States; Department of Pathology, Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, United States
| | - Raif S Geha
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Palmisiano ND, Wang M, Jia B, Bayerl M, Schell TD, Hohl RJ, Zeng H, Zheng H. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol 2017. [PMID: 28629373 PMCID: PMC5477125 DOI: 10.1186/s13045-017-0486-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhong Zhang
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Neil D Palmisiano
- Depatment of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Michael Bayerl
- Department of Pathology, Penn State Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, United States
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Raymond J Hohl
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA. .,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
4
|
Knox JJ, Buggert M, Kardava L, Seaton KE, Eller MA, Canaday DH, Robb ML, Ostrowski MA, Deeks SG, Slifka MK, Tomaras GD, Moir S, Moody MA, Betts MR. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2017; 2:92943. [PMID: 28422752 DOI: 10.1172/jci.insight.92943] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
Humoral immunity is critical for viral control, but the identity and mechanisms regulating human antiviral B cells are unclear. Here, we characterized human B cells expressing T-bet and analyzed their dynamics during viral infections. T-bet+ B cells demonstrated an activated phenotype, a distinct transcriptional profile, and were enriched for expression of the antiviral immunoglobulin isotypes IgG1 and IgG3. T-bet+ B cells expanded following yellow fever virus and vaccinia virus vaccinations and also during early acute HIV infection. Viremic HIV-infected individuals maintained a large T-bet+ B cell population during chronic infection that was associated with increased serum and cell-associated IgG1 and IgG3 expression. The HIV gp140-specific B cell response was dominated by T-bet-expressing memory B cells, and we observed a concomitant biasing of gp140-specific serum immunoglobulin to the IgG1 isotype. These findings suggest that T-bet induction promotes antiviral immunoglobulin isotype switching and development of a distinct T-bet+ B cell subset that is maintained by viremia and coordinates the HIV Env-specific humoral response.
Collapse
Affiliation(s)
- James J Knox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute; and Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, and Cleveland VA, Cleveland, Ohio, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mario A Ostrowski
- Departments of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute; and Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute; Department of Pediatrics; and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Takemori T, Kaji T, Takahashi Y, Shimoda M, Rajewsky K. Generation of memory B cells inside and outside germinal centers. Eur J Immunol 2014; 44:1258-64. [DOI: 10.1002/eji.201343716] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/05/2013] [Accepted: 02/27/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Toshitada Takemori
- Drug Discovery Antibody Platform Unit; RIKEN Center for Integrative Medical Sciences (IMS); Yokohama Japan
| | - Tomohiro Kaji
- Laboratory for Immunological Memory; RIKEN Research Center for Allergy and Immunology (RCAI); Yokohama Japan
| | - Yoshimasa Takahashi
- Department of Immunology; National Institute of Infectious Diseases; Tokyo Japan
| | - Michiko Shimoda
- Cancer Immunology; Inflammation and Tolerance Program; Georgia Regents University Cancer Center; Augusta GA USA
| | - Klaus Rajewsky
- Immune Regulation and Cancer; Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| |
Collapse
|
6
|
Komegae EN, Grund LZ, Lopes-Ferreira M, Lima C. TLR2, TLR4 and the MyD88 signaling are crucial for the in vivo generation and the longevity of long-lived antibody-secreting cells. PLoS One 2013; 8:e71185. [PMID: 23940714 PMCID: PMC3733974 DOI: 10.1371/journal.pone.0071185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/27/2013] [Indexed: 01/06/2023] Open
Abstract
This study was undertaken to gain better insights into the role of TLRs and MyD88 in the development and differentiation of memory B cells, especially of ASC, during the Th2 polarized memory response induced by Natterins. Our in vivo findings demonstrated that the anaphylactic IgG1 production is dependent on TLR2 and MyD88 signaling, and that TLR4 acts as adjuvant accelerating the synthesis of high affinity-IgE. Also, TLR4 (MyD88-independent) modulated the migration of innate-like B cells (B1a and B2) out of the peritoneal cavity, and the emigration from the spleen of B1b and B2 cells. TLR4 (MyD88-independent) modulated the emigration from the spleen of Bmem as well as ASC B220pos. TLR2 triggered to the egress from the peritoneum of Bmem (MyD88-dependent) and ASC B220pos (MyD88-independent). We showed that TLR4 regulates the degree of expansion of Bmem in the peritoneum (MyD88-dependent) and in BM (MyD88-independent) as well as of ASC B220neg in the spleen (MyD88-independent). TLR2 regulated the intensity of the expansion of Bmem (MyD88-independent) and ASC B220pos (MyD88-dependent) in BM. Finally, TLR4 signals sustained the longevity of ASC B220pos (MyD88-independent) and ASC B220neg into the peritoneum (MyD88-dependent) and TLR2 MyD88-dependent signaling supported the persistence of B2 cells in BM, Bmem in the spleen and ASC B220neg in peritoneum and BM. Terminally differentiated ASC B220neg required the cooperation of both signals through TLR2/TLR4 via MyD88 for longevity in peritoneum, whereas Bmem required only TLR2/MyD88 to stay in spleen, and ASC B220pos rested in peritoneum dependent on TLR4 signaling. Our data sustain that earlier events on memory B cells differentiation induced in secondary immune response against Natterins, after secondary lymph organs influx and egress, may be the key to determining peripheral localization of innate-like B cells and memory B cells as ASC B220pos and ASC B220neg.
Collapse
Affiliation(s)
- Evilin Naname Komegae
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Fernández D, Ortiz M, Rodríguez L, García A, Martinez D, Moreno de Alborán I. The proto-oncogene c-myc regulates antibody secretion and Ig class switch recombination. THE JOURNAL OF IMMUNOLOGY 2013; 190:6135-44. [PMID: 23690468 DOI: 10.4049/jimmunol.1300712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The immune response involves the generation of Ab-secreting cells and memory B cells through a process called terminal B lymphocyte differentiation. This program requires the transcriptional repressor Blimp-1, which inhibits c-myc expression and terminates proliferation. Although the role of c-Myc in cell proliferation is well characterized, it is not known whether it has other functions in terminal differentiation. In this study, we show that c-Myc not only regulates cell proliferation, but it is also essential for Ab-secreting cell function and differentiation in vivo. c-Myc-deficient B lymphocytes hypersecrete IgM and do not undergo Ig class switch recombination (CSR). CSR has been previously linked to proliferation, and in this study we mechanistically link class switching and proliferation via c-Myc. We observed that c-Myc regulates CSR by transcriptionally activating the B cell-specific factor activation-induced cytidine deaminase. By linking cell proliferation and CSR, c-Myc is thus a critical component for a potent immune response.
Collapse
Affiliation(s)
- David Fernández
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Madrid E-28049, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Foote JB, Mahmoud TI, Vale AM, Kearney JF. Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting cells. THE JOURNAL OF IMMUNOLOGY 2011; 188:57-67. [PMID: 22116821 DOI: 10.4049/jimmunol.1100783] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many bacteria-associated polysaccharides induce long-lived Ab responses that protect against pathogenic microorganisms. The maintenance of polysaccharide-specific Ab titers may be due to long-lived plasma cells or ongoing Ag-driven B cell activation due to polysaccharide persistence. BALB/c and V(H)J558.3 transgenic mice respond to α1→3-dextran (DEX) by generating a peak anti-DEX response at 7 d, followed by maintenance of serum Ab levels for up to 150 d. Analysis of the cellular response to DEX identified a population of short-lived, cyclophosphamide-sensitive DEX-specific plasmablasts in the spleen, and a quiescent, cyclophosphamide-resistant DEX-specific Ab-secreting population in the bone marrow. BrdU pulse-chase experiments demonstrated the longevity of the DEX-specific Ab-secreting population in the bone marrow. Splenic DEX-specific plasmablasts were located in the red pulp with persisting DEX-associated CD11c(+) dendritic cells 90 d after immunization, whereas DEX was not detected in the bone marrow after 28 d. Selective depletion of short-lived DEX-specific plasmablasts and memory B1b B cells using cyclophosphamide and anti-CD20 treatment had a minimal impact on the maintenance of serum anti-DEX Abs. Collectively, these findings demonstrate that the maintenance of serum polysaccharide-specific Abs is the result of continuous Ag-driven formation of short-lived plasmablasts in the spleen and a quiescent population of Ab-secreting cells maintained in the bone marrow for a long duration.
Collapse
Affiliation(s)
- Jeremy B Foote
- Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
9
|
Wolf AI, Mozdzanowska K, Quinn WJ, Metzgar M, Williams KL, Caton AJ, Meffre E, Bram RJ, Erickson LD, Allman D, Cancro MP, Erikson J. Protective antiviral antibody responses in a mouse model of influenza virus infection require TACI. J Clin Invest 2011; 121:3954-64. [PMID: 21881204 DOI: 10.1172/jci57362] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/25/2011] [Indexed: 11/17/2022] Open
Abstract
Antiviral Abs, for example those produced in response to influenza virus infection, are critical for virus neutralization and defense against secondary infection. While the half-life of Abs is short, Ab titers can last a lifetime due to a subset of the Ab-secreting cells (ASCs) that is long lived. However, the mechanisms governing ASC longevity are poorly understood. Here, we have identified a critical role for extrinsic cytokine signals in the survival of respiratory tract ASCs in a mouse model of influenza infection. Irradiation of mice at various time points after influenza virus infection markedly diminished numbers of lung ASCs, suggesting that they are short-lived and require extrinsic factors in order to persist. Neutralization of the TNF superfamily cytokines B lymphocyte stimulator (BLyS; also known as BAFF) and a proliferation-inducing ligand (APRIL) reduced numbers of antiviral ASCs in the lungs and bone marrow, whereas ASCs in the spleen and lung-draining lymph node were surprisingly unaffected. Mice deficient in transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), a receptor for BLyS and APRIL, mounted an initial antiviral B cell response similar to that generated in WT mice but failed to sustain protective Ab titers in the airways and serum, leading to increased susceptibility to secondary viral challenge. These studies highlight the importance of TACI signaling for the maintenance of ASCs and protection against influenza virus infection.
Collapse
Affiliation(s)
- Amaya I Wolf
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Satpathy S, Shenoy GN, Kaw S, Vaidya T, Bal V, Rath S, George A. Inhibition of terminal differentiation of B cells mediated by CD27 and CD40 involves signaling through JNK. THE JOURNAL OF IMMUNOLOGY 2010; 185:6499-507. [PMID: 20974987 DOI: 10.4049/jimmunol.0903229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells responding to cognate Ag in vivo undergo clonal expansion that is followed by differentiation into Ab-secreting plasma cells or into quiescent restimulable memory. Both these events occur in the germinal center and require that cells exit from proliferation, but the signals that lead to one or the other of these mutually exclusive differentiation pathways have not been definitively characterized. Previous experiments have shown that signals transduced through the TNFRs CD27 and CD40 at the time of B cell stimulation in vitro or in vivo can influence this cell fate decision by inhibiting terminal differentiation and promoting memory. In this study, we show that the PIQED domain of the cytoplasmic tail of murine CD27 and the adapter molecule TNFR-associated factor 2 are involved in this effect. Using pharmacological inhibitors of signaling intermediates, we identify JNK as being necessary and sufficient for the observed inhibition of terminal differentiation. While JNK is involved downstream of CD40, inhibition of the MEK pathway can also partially restore plasma cell generation, indicating that both signaling intermediates may be involved. We also show that inhibition of induction of IFN regulatory factor 4 and B lymphocyte induced maturation protein 1 are downstream events common to both receptors.
Collapse
|
11
|
Belz GT, Kallies A. Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination. Curr Opin Immunol 2010; 22:279-85. [PMID: 20434894 DOI: 10.1016/j.coi.2010.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/17/2010] [Indexed: 02/03/2023]
Abstract
CD8(+) T cells play a key role in protecting the body against invading microorganisms. Their capacity to control infection relies on the development of peripheral effector and memory T cells. Much of our current knowledge has been gained by tracking alterations of the phenotype of CD8(+) T cells but the molecular understanding of the events that underpin the emergence of heterogeneous effector and memory CD8(+) T cells in response to infection has remained limited. This review focuses on the recent progress in our understanding of the molecular wiring of this differentiation process.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | |
Collapse
|
12
|
DiPlacido LD, Craft J. Emerging from the shadows: follicular helper T cells in autoimmunity. ACTA ACUST UNITED AC 2010; 62:6-8. [PMID: 20039423 DOI: 10.1002/art.25045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Abstract
The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review, we focus on the generation, maintenance, and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets.
Collapse
Affiliation(s)
- Stephen C Jameson
- Department of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
14
|
A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 2009; 31:309-20. [PMID: 19664943 DOI: 10.1016/j.immuni.2009.06.019] [Citation(s) in RCA: 380] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/15/2009] [Accepted: 06/29/2009] [Indexed: 01/01/2023]
Abstract
T cell exhaustion is common during chronic infections and can prevent optimal immunity. Although recent studies have demonstrated the importance of inhibitory receptors and other pathways in T cell exhaustion, the underlying transcriptional mechanisms are unknown. Here, we define a role for the transcription factor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Blimp-1 repressed key aspects of normal memory CD8(+) T cell differentiation and promoted high expression of inhibitory receptors during chronic infection. These cardinal features of CD8(+) T cell exhaustion were corrected by conditionally deleting Blimp-1. Although high expression of Blimp-1 fostered aspects of CD8(+) T cell exhaustion, haploinsufficiency indicated that moderate Blimp-1 expression sustained some effector function during chronic viral infection. Thus, we identify Blimp-1 as a transcriptional regulator of CD8(+) T cell exhaustion during chronic viral infection and propose that Blimp-1 acts as a transcriptional rheostat balancing effector function and T cell exhaustion.
Collapse
|
15
|
Wang YH, Diamond B. B cell receptor revision diminishes the autoreactive B cell response after antigen activation in mice. J Clin Invest 2008; 118:2896-907. [PMID: 18636122 DOI: 10.1172/jci35618] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 06/11/2008] [Indexed: 12/16/2022] Open
Abstract
Autoreactive B cells are regulated in the BM during development through mechanisms, including editing of the B cell receptor (BCR), clonal deletion, and anergy. Peripheral B cell tolerance is also important for protection from autoimmune damage, although the mechanisms are less well defined. Here we demonstrated, using a mouse model of SLE-like serology, that during an autoimmune response, RAG was reinduced in antigen-activated early memory or preplasma B cells. Expression of RAG was specific to antigen-reactive B cells, required the function of the IL-7 receptor (IL-7R), and contributed to maintenance of humoral tolerance. We also showed that soluble antigen could diminish a non-autoreactive antibody response through induction of BCR revision. These data suggest that tolerance induction operates in B cells at a postactivation checkpoint and that BCR revision helps regulate autoreactivity generated during an ongoing immune response.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Department of Microbiology, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
16
|
Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 2008; 112:4991-8. [PMID: 18812467 DOI: 10.1182/blood-2008-07-166892] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We demonstrate that the secretome of mesenchymal stromal cells (MSCs) suppresses plasma cell (PC) immunoglobulin (Ig) production, induces plasmablast proliferation, and leads to interleukin-10-mediated blockade in vitro. We found that these effects are the result of MSC-derived CC chemokine ligands CCL2 and CCL7. More specifically, MSCs further processed these CC chemokines by the activity of matrix metalloproteinases (MMPs), leading to the generation of proteolytically processed antagonistic CCL2 variant. Neutralizing CCL2 or inhibiting MMP enzymatic activity abolished the PC-suppressive effect of MSCs. We also observed that MMP-processed CCL2 suppresses signal transducer and activator of transcription 3 (STAT3) activation in PC. As a result, the transcription factor PAX5 is induced, thus explaining the inhibition of Ig synthesis. The absence of inhibitory effects by MSC on the humoral response of CCR2(-/-) mice to xenoantigen suggests that MMP-cleaved CCL2/CCR2 interaction as well as downstream phosphatase activity is necessary for antagonistic effect. We tested syngeneic MSCs in hemophilic B6 mice with predeveloped antihuman factor VIII (hFVIII) antibodies and demonstrated a robust decrease in hFVIII-specific IgG levels. Thus, MSCs may play a role in modulating Ig production by PCs via MMP processing of CCL2 and may represent an appealing cell therapy approach for pathologic humoral responses.
Collapse
|
17
|
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1), discovered 16 years ago as a transcriptional repressor of the IFNbeta promoter, plays fundamentally important roles in many cell lineages and in early development. This review focuses on Blimp-1 in lymphocytes. In the B cell lineage, Blimp-1 is required for development of immunoglobulin-secreting cells and for maintenance of long-lived plasma cells (LLPCs). Direct targets of Blimp-1 and the transcriptional cascades Blimp-1 initiates to trigger plasmacytic differentiation are described. Blimp-1 also affects the homeostasis and function of CD4(+), CD8(+), and regulatory CD4(+) T cells, and Blimp-1 levels are highest in antigen-experienced T cells. Blimp-1 attenuates T cell proliferation and survival and modulates differentiation. Roles for Blimp-1 in Th1/Th2 specification, regulatory T cell function, and CD8 differentiation and function are under investigation. Signals that induce Blimp-1 in B cells include Toll-like receptor ligands and cytokines; in T cells, T cell receptors and cytokines induce Blimp-1. In spite of some commonalities, different targets and regulators of Blimp-1 in B and T cells suggest intriguing evolutionary divergence of this regulatory machinery.
Collapse
Affiliation(s)
- Gislâine Martins
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
18
|
Emslie D, D'Costa K, Hasbold J, Metcalf D, Takatsu K, Hodgkin PO, Corcoran LM. Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor alpha chain expression on activated B cells. ACTA ACUST UNITED AC 2008; 205:409-21. [PMID: 18250192 PMCID: PMC2271016 DOI: 10.1084/jem.20072049] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mice lacking a functional gene for the Oct2 transcriptional activator display several developmental and functional deficiencies in the B lymphocyte lineage. These include defective B cell receptor (BCR) and Toll-like receptor 4 signaling, an absence of B-1 and marginal zone populations, and globally reduced levels of serum immunoglobulin (Ig) in naive and immunized animals. Oct2 was originally identified through its ability to bind to regulatory regions in the Ig loci, but genetic evidence has not supported an essential role for Oct2 in the expression of Ig genes. We describe a new Oct2-mediated role in B cells. Oct2 augments the ability of activated B cells to differentiate to antibody-secreting plasma cells (ASCs) under T cell-dependent conditions through direct regulation of the gene encoding the alpha chain of the interleukin (IL) 5 receptor. Ectopic expression of IL-5Ralpha in oct2-deficient B cells largely restores their ability to differentiate to functional ASCs in vitro but does not correct other phenotypic defects in the mutants, such as the maturation and specialization of peripheral B cells, which must therefore rely on distinct Oct2 target genes. IL-5 augments ASC differentiation in vitro, and we show that IL-5 directly activates the plasma cell differentiation program by enhancing blimp1 expression.
Collapse
Affiliation(s)
- Dianne Emslie
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
John SA, Clements JL, Russell LM, Garrett-Sinha LA. Ets-1 regulates plasma cell differentiation by interfering with the activity of the transcription factor Blimp-1. J Biol Chem 2007; 283:951-62. [PMID: 17977828 DOI: 10.1074/jbc.m705262200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Development of immunoglobulin-secreting plasma cells from B cells is a tightly regulated process controlled by the action of a number of transcription factors. In particular, the transcription factor Blimp-1 is a key positive regulator of plasmacytic differentiation via its ability to suppress expression of genes involved in the mature B cell program. The transcription factor Ets-1 is a negative regulator of plasmacytic differentiation, as indicated by the development of increased numbers of IgM-secreting plasma cells in Ets-1 knock-out mice. We have previously shown that Ets-1-deficient B cells undergo enhanced differentiation into IgM-secreting plasma cells in response to Toll-like receptor 9 (TLR9) signaling. We now explore the mechanism by which Ets-1 limits differentiation downstream of TLR9. Our results indicate that Ets-1 physically interacts with Blimp-1, which leads to a block in Blimp-1 DNA binding activity and a reduction in the ability of Blimp-1 to repress target genes without interfering with Blimp-1 protein levels. In addition, we show that Ets-1 induces the expression of several target genes that are repressed by Blimp-1, including Pax-5. These results reveal a previously unknown mechanism for the control of Blimp-1 activity by Ets-1 and suggest that expression of Ets-1 must be down-regulated before plasmacytic differentiation can occur.
Collapse
Affiliation(s)
- Shinu A John
- Department of Biochemistry, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
21
|
Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27:670-84. [PMID: 17950003 DOI: 10.1016/j.immuni.2007.09.006] [Citation(s) in RCA: 1586] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/10/2007] [Accepted: 09/17/2007] [Indexed: 12/15/2022]
Abstract
Chronic viral infections often result in T cell exhaustion. To determine the molecular signature of exhaustion, we compared the gene-expression profiles of dysfunctional lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cells from chronic infection to functional LCMV-specific effector and memory CD8(+) T cells generated after acute infection. These data showed that exhausted CD8(+) T cells: (1) overexpressed several inhibitory receptors, including PD-1, (2) had major changes in T cell receptor and cytokine signaling pathways, (3) displayed altered expression of genes involved in chemotaxis, adhesion, and migration, (4) expressed a distinct set of transcription factors, and (5) had profound metabolic and bioenergetic deficiencies. T cell exhaustion was progressive, and gene-expression profiling indicated that T cell exhaustion and anergy were distinct processes. Thus, functional exhaustion is probably due to both active suppression and passive defects in signaling and metabolism. These results provide a framework for designing rational immunotherapies during chronic infections.
Collapse
|
22
|
A novel role for the Aurora B kinase in epigenetic marking of silent chromatin in differentiated postmitotic cells. EMBO J 2007; 26:4657-69. [PMID: 17948062 PMCID: PMC2048755 DOI: 10.1038/sj.emboj.7601875] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/14/2007] [Indexed: 02/04/2023] Open
Abstract
Combinatorial modifications of the core histones have the potential to fine-tune the epigenetic regulation of chromatin states. The Aurora B kinase is responsible for generating the double histone H3 modification tri-methylated K9/phosphorylated S10 (H3K9me3/S10ph), which has been implicated in chromosome condensation during mitosis. In this study, we have identified a novel role for Aurora B in epigenetic marking of silent chromatin during cell differentiation. We find that phosphorylation of H3 S10 by Aurora B generates high levels of the double H3K9me3/S10ph modification in differentiated postmitotic cells and also results in delocalisation of HP1beta away from heterochromatin in terminally differentiated plasma cells. Microarray analysis of the H3K9me3/S10ph modification shows a striking increase in the modification across repressed genes during differentiation of mesenchymal stem cells. Our results provide evidence that the Aurora B kinase has a role in marking silent chromatin independently of the cell cycle and suggest that targeting of Aurora B-mediated phosphorylation of H3 S10 to repressed genes could be a mechanism for epigenetic silencing of gene expression.
Collapse
|
23
|
Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:7779-86. [PMID: 17548615 DOI: 10.4049/jimmunol.178.12.7779] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Naive murine B cells are known to proliferate and differentiate in response to LPS or CpG, which bind to TLR4 and TLR9, respectively. However, the naive murine B cell compartment is heterogeneous and comprises four different B cell subsets: B-1a, B-1b, marginal zone (MZ), and follicular (FO) B cells. B-1a, B-1b, and MZ B cells are specialized in the response to thymus-independent Ag, and FO B cells are involved in the response to thymus-dependent Ag. This study was undertaken to compare those four naive B cell subsets for their responses to TLR agonists. Quantitative RT-PCR analysis revealed that expression of TLR transcripts differs quantitatively but not qualitatively from one subset to the other. All TLR agonists, with the exception of flagellin and poly(I:C), stimulate B cell proliferation whatever the subset considered. However, TLR ligation leads to massive differentiation of B-1 and MZ B cells into mature plasma cells (PC) but only marginally promotes PC differentiation of FO B cells. Moreover, TLR stimulation strongly up-regulates expression of Blimp-1 and XBP-1(S), two transcription factors known to be instrumental in PC differentiation, in B-1 and MZ B cells but not in FO B cells. Altogether, our findings suggest that B-1 and MZ B cells are poised to PC differentiation in response to the microbial environment and that TLR agonists can be instrumental in stimulating Ab-mediated innate immune protection during microbial infections.
Collapse
Affiliation(s)
- Laurent Genestier
- Institut National de la Santé et de la Recherche Médicale Unité 851, IFR128 Biosciences Lyon-Gerland, 21 Avenue Tony Garnier, Lyon, France
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
This special issue highlights a pivotal set of regulatory molecules that have emerged as central controllers of cell-type identity in the immune system. Each in its own way has been considered as a kind of 'master' regulator of a particular cell fate choice, but the actual modes of action of these factors vary widely. The comparison among them sheds light on the different ways that an essential regulatory input can affect cellular identity.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, 156-29, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|