1
|
Montano E, Bhatia N, Ostojić J. Biomarkers in Cutaneous Keratinocyte Carcinomas. Dermatol Ther (Heidelb) 2024; 14:2039-2058. [PMID: 39030446 PMCID: PMC11333699 DOI: 10.1007/s13555-024-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
Skin cancer is the most common cancer type in the USA, with over five million annually treated cases and one in five Americans predicted to develop the disease by the age of 70. Skin cancer can be classified as melanoma or non-melanoma (NMSC), the latter including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). Development of BCC and SCC is impacted by environmental, behavioral, and genetic risk factors and the incidence is on the rise, with the associated number of deaths surpassing those caused by melanoma, according to recent reports. Substantial morbidity is related to both BCC and SCC, including disfigurement, loss of function, and chronic pain, driving high treatment costs, and representing a heavy financial burden to patients and healthcare systems worldwide. Clinical presentations of BCC and SCC can be diverse, sometimes carrying considerable phenotypic similarities to benign lesions, and underscoring the need for the development of disease-specific biomarkers. Skin biomarker profiling plays an important role in deeper disease understanding, as well as in guiding clinical diagnosis and patient management, prompting the use of both invasive and non-invasive tools to evaluate specific biomarkers. In this work, we review the known and emerging biomarkers of BCC and SCC, with a focus on molecular and histologic biomarkers relevant for aspects of patient management, including prevention/risk assessments, tumor diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Erica Montano
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA
| | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, CA, USA
| | - Jelena Ostojić
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA.
| |
Collapse
|
2
|
Kurtović M, Piteša N, Čonkaš J, Hajpek H, Vučić M, Musani V, Ozretić P, Sabol M. GLI Transcriptional Targets S100A7 and KRT16 Show Upregulated Expression Patterns in Epidermis Overlying the Tumor Mass in Melanoma Samples. Int J Mol Sci 2024; 25:6084. [PMID: 38892279 PMCID: PMC11172526 DOI: 10.3390/ijms25116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.
Collapse
Affiliation(s)
- Matea Kurtović
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Nikolina Piteša
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Josipa Čonkaš
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Helena Hajpek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Majda Vučić
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
- Department of Pathology, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| |
Collapse
|
3
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Zhao C, Hu W, Luo N, Wang X, Lin D, Lin Z. Expression of S100A9 in adamantinomatous craniopharyngioma and its association with wet keratin formation. Exp Ther Med 2023; 25:282. [PMID: 37206553 PMCID: PMC10189609 DOI: 10.3892/etm.2023.11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 05/21/2023] Open
Abstract
Wet keratin is a hallmark of adamantinomatous craniopharyngioma (ACP), which is frequently infiltrated by inflammatory cells. S100 calcium-binding protein A9 (S100A9) has been confirmed to play a decisive role in the development of inflammation. However, the relationship between wet keratin (keratin nodules) and S100A9 in ACP is poorly understood. The objective of the present study was to explore the expression of S100A9 in ACP and its association with wet keratin formation. Immunohistochemistry and immunofluorescence were used to detect the expression of S100A9, β-catenin and Ki67 in 46 cases of ACP. A total of three online databases were used to analyze S100A9 gene expression and protein data. The results revealed that S100A9 was primarily expressed in wet keratin and some intratumoral and peritumoral cells, and its expression in wet keratin was upregulated in the high inflammation group (P=1.800x10-3). In addition, S100A9 was correlated with the degree of inflammation (r=0.6; P=7.412x10-3) and the percentage of Ki67-positive cells (r=0.37; P=1.000x10-2). In addition, a significant correlation was noted between the area of wet keratin and the degree of inflammation (r=0.51; P=2.500x10-4). In conclusion, the present study showed that S100A9 was upregulated in ACP and may be closely associated with wet keratin formation and the infiltration of inflammatory cells in ACP.
Collapse
Affiliation(s)
- Chuan Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
- Department of Neuro-oncology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Wenxin Hu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Ning Luo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Da Lin
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| | - Zhixiong Lin
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
- Correspondence to: Professor Zhixiong Lin, Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, 50 Yikesong Road, Xiangshan, Haidian, Beijing 100093, P.R. China
| |
Collapse
|
5
|
Matas-Nadal C, Bech-Serra JJ, Gatius S, Gomez X, Ribes-Santolaria M, Guasch-Vallés M, Pedraza N, Casanova JM, Gómez CDLT, Garí E, Aguayo-Ortiz RS. Biomarkers found in the tumor interstitial fluid may help explain the differential behavior among keratinocyte carcinomas. Mol Cell Proteomics 2023; 22:100547. [PMID: 37059366 DOI: 10.1016/j.mcpro.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Basal Cell Carcinomas (BCC) and cutaneous Squamous Cell Carcinomas (SCC) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KC). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the Tumor Interstitial Fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing 7 BCCs, 16 SCCs, and 4 Normal Skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF-proteins that could explain the different metastatic behavior in both KC. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin1. Previous studies found their up-regulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KC provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.
Collapse
Affiliation(s)
- Clara Matas-Nadal
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dermatology department. Hospital Santa Caterina, Salt, Girona.
| | - Joan J Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Sònia Gatius
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Servei d'anatomia patològica, Hospital Universitari Arnau de Vilanova, Lleida
| | - Xavier Gomez
- Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marina Ribes-Santolaria
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marta Guasch-Vallés
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Neus Pedraza
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Josep M Casanova
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida
| | | | - Eloi Garí
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Rafael S Aguayo-Ortiz
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida; Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida)
| |
Collapse
|
6
|
Occurrence of Human Defensins and S100 Proteins in Head and Neck Basal Cell Carcinoma (BCC) Entities: hBD3 and S100A4 as Potential Biomarkers to Evaluate Successful Surgical Therapy. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2023. [DOI: 10.3390/ohbm4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: The goal of this study is the identification of potential marker molecules for characterizing different basal cell carcinoma entities, to help improve clinical decisions for surgical resection therapy. Methods: Three different entities, sclerodermiform, solid and superficial basal cell carcinomas, were subjected to immunohistochemical microscopy and histomorphometric analyses for human α- (DEFA1/3; DEFA4) and β-defensins (hBD1/2/3) and special S100 proteins (S100A4/7/8/9). Thirty specimens of the three entities were evaluated. Analyses were performed by comparing tissue and cellular localization and staining intensities of tumorous with non-tumorous areas. Staining intensities were semiquantitatively examined by using an RGB-based model. Results: Human defensins are present in all three entities of basal cell carcinomas. They all show cytoplasmic immunostaining in cells of the epithelium, stroma and tumor. Notably, human β-defensin3 is accumulated in the cell nuclei of sclerodermiform and superficial basal cell carcinomas. S100A4 and A7 are undetectable in tumor regions. However, S100A4 occurs in cancer-associated stroma cells with nuclear staining in superficial basal cell carcinomas. Conclusion: Two candidates, namely hBD3 and S100A4, might be used as potential clinical tools for evaluating successful surgical resection therapy to avoid aesthetic and functional facial deformation.
Collapse
|
7
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Yadav K, Singh D, Singh MR. Novel archetype in psoriasis management bridging molecular dynamics in exploring novel therapies. Eur J Pharmacol 2021; 907:174254. [PMID: 34118225 DOI: 10.1016/j.ejphar.2021.174254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Psoriasis is an autoimmune chronic inflammatory condition of skin affecting 125 million populaces around the globe. It is implicated as a result of multifaceted phenomena involving various cell and subcell activities with the aid of numerous cellular and molecular components including signaling aisle and regulatory proteins owing to the development of such hyperproliferative dermatological conditions. This involves a deeply complex and conflicting pathology owing to genetic and immunological deviations resulting from the unusual presentation of different signaling pathways and regulatory proteins. Explorations of these biomarkers and intervention of molecular and cellular processes in psoriasis are yet to be investigated and could be an exceptional aspect for understanding pathology with successful targeting of disease. In the presented study, we have integrated molecular insights, including signaling molecules, pathways, and proteins implicated in pathogenesis, and we have attempted to link this knowledge to the targeting of these phenomena in order to manage the conditions precisely. Further, therapeutic delivery approaches for targeting distinct layers of skin have also been investigated based on the application of different nanocarriers for successful psoriasis treatment.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, India.
| |
Collapse
|
9
|
Bhatt T, Bhosale A, Bajantri B, Mathapathi MS, Rizvi A, Scita G, Majumdar A, Jamora C. Sustained Secretion of the Antimicrobial Peptide S100A7 Is Dependent on the Downregulation of Caspase-8. Cell Rep 2020; 29:2546-2555.e4. [PMID: 31775025 DOI: 10.1016/j.celrep.2019.10.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are the body's natural innate immune defense against a spectrum of pathogens and can also modulate cell proliferation, chemotaxis, angiogenesis, wound healing, and immune cell activity. Harnessing these diverse functions for prophylactic use is contingent upon understanding the regulatory mechanisms governing their unconventional secretion from cells. Analysis of the secretion of S100A7 (Psoriasin), an abundant AMP stored in differentiated keratinocytes of the skin, has revealed an unexpected biphasic secretory response to bacterial exposure. The core components regulating S100A7 secretion are NFκB/p38MAPK, caspase-1, and interleukin (IL)-1α. The initial activation of this core machinery is mediated by Toll-like receptor signaling, whereas the chronic response is mediated by Caspase-8 downregulation. Interestingly, there is a concomitant downregulation of Caspase-8 in inflammatory skin diseases wherein S100A7 is constitutively released. These results highlight the potential of targeting these components to control the release of AMPs from the skin in both homeostatic and disease conditions.
Collapse
Affiliation(s)
- Tanay Bhatt
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India; National Centre for Biological Sciences (TIFR), Bangalore, Karnataka 560065, India
| | - Aishwarya Bhosale
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Bhavya Bajantri
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | | | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-oncology, School of Medicine, University of Milan, 20122 Milan, Italy
| | | | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|
10
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
11
|
Pandey S, Osman TA, Sharma S, Vallenari EM, Shahdadfar A, Pun CB, Gautam DK, Uhlin-Hansen L, Rikardsen O, Johannessen AC, Costea DE, Sapkota D. Loss of S100A14 expression at the tumor-invading front correlates with poor differentiation and worse prognosis in oral squamous cell carcinoma. Head Neck 2020; 42:2088-2098. [PMID: 32202693 DOI: 10.1002/hed.26140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND We previously showed a tumor-suppressive function of S100A14 in oral squamous cell carcinoma (OSCC). This study aimed to examine the prognostic significance and differentiation-related function of S100A14 in OSCC. METHODS S100A14 expression was examined in 170 OSCCs from Norwegian and Nepalese populations using immunohistochemistry. Pro-differentiation function was investigated by overexpressing and silencing S100A14 expression in OSCC-derived cells. External transcriptomic datasets were used to validate association between S100A14 and differentiation markers in OSCC. RESULT Loss of S100A14 expression at the invading tumor fronts significantly correlated with poor differentiation and reduced 10-years survival of OSCC-patients. Multivariate Cox analysis identified S100A14 to be an independent prognostic factor. Modulation of S100A14 expression in OSCC-derived cells positively correlated with the expression of differentiation markers. Analysis of external datasets supported the pro-differentiation function of S100A14. CONCLUSION These results indicate that S100A14 is a pro-differentiation protein and its expression might be useful as a prognostic marker in OSCC.
Collapse
Affiliation(s)
- Sushma Pandey
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tarig A Osman
- Department of Clinical Medicine, the Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, Bergen, Norway
| | - Sunita Sharma
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Evan M Vallenari
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Aboulghassem Shahdadfar
- Centre for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Chin B Pun
- Department of Pathology, B.P. Koirala Memorial Cancer Hospital, Bharatpur, Nepal
| | - Dej K Gautam
- Department of Surgical Oncology, B.P. Koirala Memorial Cancer Hospital, Bharatpur, Nepal
| | - Lars Uhlin-Hansen
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway.,Department of Medical Biology-Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Oddveig Rikardsen
- Department of Otorhinolaryngology, University Hospital of North Norway, Tromsø, Norway
| | - Anne C Johannessen
- Department of Clinical Medicine, the Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Daniela E Costea
- Department of Clinical Medicine, the Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Li Y, Kong F, Jin C, Hu E, Shao Q, Liu J, He D, Xiao X. The expression of S100A8/S100A9 is inducible and regulated by the Hippo/YAP pathway in squamous cell carcinomas. BMC Cancer 2019; 19:597. [PMID: 31208368 PMCID: PMC6580480 DOI: 10.1186/s12885-019-5784-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background S100A8 and S100A9, two heterodimer-forming members of the S100 family, aberrantly express in a variety of cancer types. However, little is known about the mechanism that regulates S100A8/S100A9 co-expression in cancer cells. Methods The expression level of S100A8/S100A9 measured in three squamous cell carcinomas (SCC) cell lines and their corresponding xenografts, as well as in 257 SCC tissues. The correlation between S100A8/S100A9, Hippo pathway and F-actin cytoskeleton were evaluated using western blot, qPCR, ChIP and Immunofluorescence staining tests. IncuCyte ZOOM long time live cell image monitoring system, qPCR and Flow Cytometry measured the effects of S100A8/S100A9 and YAP on cell proliferation, cell differentiation and apoptosis. Results Here, we report that through activation of the Hippo pathway, suspension and dense culture significantly induce S100A8/S100A9 co-expression and co-localization in SCC cells. Furthermore, these expressional characteristics of S100A8/S100A9 also observed in the xenografts derived from the corresponding SCC cells. Importantly, Co-expression of S100A8/S100A9 detected in 257 SCC specimens derived from five types of SCC tissues. Activation of the Hippo pathway by overexpression of Lats1, knockdown of YAP, as well as disruption of F-actin indeed obviously results in S100A8/S100A9 co-expression in attached SCC cells. Conversely, inhibition of the Hippo pathway leads to S100A8/S100A9 co-expression in a manner opposite of cell suspension and dense. In addition, we found that TEAD1 is required for YAP-induced S100A8/S100A9-expressions. The functional studies provide evidence that knockdown of S100A8/S100A9 together significantly inhibit cell proliferation but promote squamous differentiation and apoptosis. Conclusions Our findings demonstrate for the first time that the expression of S100A8/S100A9 is inducible by changes of cell shape and density through activation of the Hippo pathway in SCC cells. Induced S100A8/S100A9 promoted cell proliferation, inhibit cell differentiation and apoptosis. Electronic supplementary material The online version of this article (10.1186/s12885-019-5784-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunguang Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Fei Kong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Chang Jin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Enze Hu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Qirui Shao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, 19th, Beijing, 100875, China.
| |
Collapse
|
13
|
Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget 2019; 10:2996-3012. [PMID: 31105881 PMCID: PMC6508202 DOI: 10.18632/oncotarget.26861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 12/17/2022] Open
Abstract
S100A14 is one of the new members of the multi-functional S100 protein family. Expression of S100A14 is highly heterogeneous among normal human tissues, suggesting that the regulation of S100A14 expression and its function may be tissue- and context-specific. Compared to the normal counterparts, S100A14 mRNA and protein levels have been found to be deregulated in several cancer types, indicating a functional link between S100A14 and malignancies. Accordingly, S100A14 is functionally linked with a number of key signaling molecules such as p53, p21, MMP1, MMP9, MMP13, RAGE, NF-kB, JunB, actin and HER2. Of interest, S100A14 seems to have seemingly opposite functions in malignancies arising from the gastrointestional tract (tissues rich in epithelial components) compared to cancers in the other parts of the body (tissues rich in mesenchymal components). The underlying mechanism for these observations are currently unclear and may be related to the relative abundance and differences in the type of interaction partners (effector protein) in different cancer types and tissues. In addition, several studies indicate that the expression pattern of S100A14 has a potential to be clinically useful as prognostic biomarker in several cancer types. This review attempts to provide a comprehensive summary on the expression pattern and functional roles/related molecular pathways in different cancer types. Additionally, the prognostic potential of S100A14 in the management of human malignancies will be discussed.
Collapse
Affiliation(s)
- Suyog Basnet
- Department of BioSciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sunita Sharma
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Sanyal RD, Pavel AB, Glickman J, Chan TC, Zheng X, Zhang N, Cueto I, Peng X, Estrada Y, Fuentes-Duculan J, Alexis AF, Krueger JG, Guttman-Yassky E. Atopic dermatitis in African American patients is T H2/T H22-skewed with T H1/T H17 attenuation. Ann Allergy Asthma Immunol 2019; 122:99-110.e6. [PMID: 30223113 DOI: 10.1016/j.anai.2018.08.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND African Americans (AA) are disproportionately impacted by atopic dermatitis (AD), with increased prevalence and therapeutic challenges unique to this population. Molecular profiling data informing development of targeted therapeutics for AD are derived primarily from European American (EA) patients. These studies are absent in AA, hindering development of effective treatments for this population. OBJECTIVE We sought to characterize the global molecular profile of AD in the skin of AA patients as compared with that of EA AD and healthy controls. METHODS We performed RNA-Seq with reverse transcription polymerase chain reaction validation and immunohistochemistry studies in lesional and nonlesional skin of AA and EA AD patients vs healthy controls. RESULTS African American AD lesions were characterized by greater infiltration of dendritic cells (DCs) marked by the high-affinity immunoglobulin E (IgE) receptor (FcεR1+) compared with EA AD (P < .05). Both AD cohorts showed similarly robust up-regulation of Th2-related (CCL17/18/26) and Th22-related markers (interleukin [IL]-22, S100A8/9/12), but AA AD featured decreased expression of innate immune (tumor necrosis factor [TNF], IL-1β), Th1-related (interferon gamma [IFN-γ], MX1, IL-12RB1), and Th17-related markers (IL-23p19, IL-36G, CXCL1) vs EA AD (P < .05). The Th2 (IL-13) and Th22-related products (IL-22, S100A8/9/12) and serum IgE were significantly correlated with clinical severity (Scoring of Atopic Dermatitis [SCORAD]) in AA. Fillagrin (FLG) was exclusively down-regulated in EA AD, whereas loricrin (LOR) was down-regulated in both AD cohorts and negatively correlated with SCORAD in AA. CONCLUSION The molecular phenotype of AA AD skin is characterized by attenuated Th1 and Th17 but similar Th2/Th22-skewing to EA AD. Our data encourages a personalized medicine approach accounting for phenotype-specific characteristics in future development of targeted therapeutics and clinical trial design for AD.
Collapse
Affiliation(s)
- Riana D Sanyal
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana B Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacob Glickman
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom C Chan
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiuzhong Zheng
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Ning Zhang
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Inna Cueto
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiangyu Peng
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yeriel Estrada
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judilyn Fuentes-Duculan
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Andrew F Alexis
- Department of Dermatology, Mount Sinai St. Luke's and Mount Sinai West, New York, New York
| | - James G Krueger
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
15
|
Evolution and Expression of S100A7 Gene in Vertebrates. Biochem Genet 2018; 57:371-381. [PMID: 30554339 DOI: 10.1007/s10528-018-9897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2018] [Indexed: 01/05/2023]
Abstract
The skin is the primary barrier between the internal organs of an organism and the environment, and it provides protection from ultraviolet (UV) radiation. According to the nocturnal bottleneck hypothesis, ungulates might have traversed to the grasslands and were exposed to UV radiation subsequent to the reduction in predation pressure. UV light exposure might have increased the S100A7 expression. In order to test whether the UV radiation is associated with the selection pressure on S100A7, we acquired the complete S100A7 DNA sequences from each of 42 vertebrate species. The results suggested that the evidence of diversifying selection in S100A7 occurred at the end of Mesozoic era, and the site of positive selection was observed in the branch of Artiodactyla (even-toed ungulates). In addition, we found that the transcription level of S100A7 in cashmere goat skin correlates with UV radiation. Our results indicated that S100A7 plays a role in the signaling between the skin genes and UV radiation during evolution.
Collapse
|
16
|
Yadav K, Singh D, Singh MR. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol 2018; 118:1796-1810. [PMID: 30017989 DOI: 10.1016/j.ijbiomac.2018.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is defined as a long-lasting multifactorial inflammatory autoimmune skin condition precisely characterized by delimited, erythematic papules with adherent shiny scales. The conditions are led by hyperproliferative responses of epidermis due to hyperactivation and immature keratinocytes production. The psoriatic skin consists of the thickened epidermal layer, in concurrence with inflammatory exudates in the dermis mainly of dendritic cells, neutrophils, T cells, and macrophages, contributing to the distinct manifestation of psoriatic lesions. It consents to multifaceted and discrete pathology due to the genetic and immunological alteration resulting from abnormal expression of various regulatory and structural proteins. These proteins are associated with various cellular and sub-cellular activities. Therefore, the presence of protein in a pathological cellular environment in the psoriatic lesions as well as in serum could be a great avenue for the insight of pathomechanism, anticipation and diagnosis of psoriasis. Research of protein biomarker in psoriasis is yet a developing realm to be explored by both fundamental and clinical researchers. This review is an attempt to assimilate the current discoveries and revelations of different proteins as a biomarker and their importance in pathogenesis, diagnosis, treatment, and anticipation of both the inflammatory and other dermatological aspects of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
17
|
Argyris PP, Slama ZM, Ross KF, Khammanivong A, Herzberg MC. Calprotectin and the Initiation and Progression of Head and Neck Cancer. J Dent Res 2018; 97:674-682. [PMID: 29443623 DOI: 10.1177/0022034518756330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric complex of calcium-binding proteins S100A8 and S100A9, is encoded by genes mapping to the chromosomal locus 1q21.3 of the epidermal differentiation complex. Whereas extracellular calprotectin shows proinflammatory and antimicrobial properties by signaling through RAGE and TLR4, intracytoplasmic S100A8/A9 appears to be important for cellular development, maintenance, and survival. S100A8/A9 is constitutively expressed in myeloid cells and the stratified mucosal epithelia lining the oropharyngeal and genitourinary mucosae. While upregulated in adenocarcinomas and other cancers, calprotectin mRNA and protein levels decline in head and neck squamous cell carcinoma (HNSCC). S100A8/A9 is also lost during head and neck preneoplasia (dysplasia). Calprotectin decrease does not correlate with the clinical stage (TNM) of HNSCC. When expressed in carcinoma cells, S100A8/A9 downregulates matrix metalloproteinase 2 expression and inhibits invasion and migration in vitro. S100A8/A9 regulates cell cycle progression and decelerates cancer cell proliferation by arresting at the G2/M checkpoint in a protein phosphatase 2α-dependent manner. In HNSCC, S100A8 and S100A9 coregulate with gene networks controlling cellular development and differentiation, cell-to-cell signaling, and cell morphology, while S100A8/A9 appears to downregulate expression of invasion- and tumorigenesis-associated genes. Indeed, tumor formation capacity is attenuated in S100A8/A9-expressing carcinoma cells in vivo. Hence, intracellular calprotectin appears to function as a tumor suppressor in head and neck carcinogenesis. When compared with S100A8/A9-low HNSCC based on analysis of TCGA, S100A8/A9-high HNSCC shows significant upregulation of apoptosis-related genes, including multiple caspases. Accordingly, S100A8/A9 facilitates DNA damage responses in HNSCC, promotes apoptotic cell death, and confers sensitivity to cisplatin and X-radiation in vitro. In the tumor milieu, loss of S100A8/A9 strongly associates with poor squamous differentiation and higher tumor grading, EGFR upregulation, increased DNA methylation, and, finally, poorer overall survival for patients with HNSCC. Hence, intracellular calprotectin shows a multifaceted protective role against the development of HNSCC.
Collapse
Affiliation(s)
- P P Argyris
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Z M Slama
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - K F Ross
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A Khammanivong
- 2 Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,3 Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - M C Herzberg
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Park KD, Park JH, Sohn MY, Lee WJ. Effects of Extracellular Calcium and Vitamin D on Cultured Human Sebocytes. Ann Dermatol 2018; 30:751-754. [PMID: 33911528 PMCID: PMC7992437 DOI: 10.5021/ad.2018.30.6.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kyung Duck Park
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jun Hong Park
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Mi Young Sohn
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
19
|
Khammanivong A, Sorenson BS, Ross KF, Dickerson EB, Hasina R, Lingen MW, Herzberg MC. Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC. Oncotarget 2017; 7:14029-47. [PMID: 26883112 PMCID: PMC4924696 DOI: 10.18632/oncotarget.7373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brent S Sorenson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Ross
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Rifat Hasina
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark W Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA.,Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, MN, USA
| |
Collapse
|
20
|
Shih BB, Nirmal AJ, Headon DJ, Akbar AN, Mabbott NA, Freeman TC. Derivation of marker gene signatures from human skin and their use in the interpretation of the transcriptional changes associated with dermatological disorders. J Pathol 2017; 241:600-613. [PMID: 28008606 PMCID: PMC5363360 DOI: 10.1002/path.4864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
Abstract
Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand the nature of these disorders. However, data interpretation represents a significant challenge due to a lack of good maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally alter during disease. Here we have sought to derive expression signatures that define the various cell types and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identified, one RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based analyses to identify clusters of robustly co-expressed genes. The biological significance of these clusters was then assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison between analyses, 20 gene signatures were defined. These included expression signatures for hair follicles, glands (sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age; we more accurately define these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also highlighted the over-/under-representation of various cell types in skin diseases, reflecting an influx in immune cells in inflammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the value of this new resource in defining the functional profile of skin cell types and appendages, and in improving the interpretation of disease data. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Barbara B Shih
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Arne N Akbar
- Division of Infection and ImmunityUniversity College London90 Gower StreetLondonWC1E 6BTUK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| |
Collapse
|
21
|
Kong F, Li Y, Hu E, Wang R, Wang J, Liu J, Zhang J, He D, Xiao X. The Characteristic of S100A7 Induction by the Hippo-YAP Pathway in Cervical and Glossopharyngeal Squamous Cell Carcinoma. PLoS One 2016; 11:e0167080. [PMID: 27907036 PMCID: PMC5132200 DOI: 10.1371/journal.pone.0167080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022] Open
Abstract
S100A7 is expressed in many squamous cell carcinomas (SCCs). Our previous study revealed that S100A7 was dramatically induced in several SCC cells and activation of the Hippo pathway significantly promoted S100A7 in epidermoid carcinoma cells. However, whether the Hippo pathway regulates S100A7 expression in SCCs remains largely unknown. Here, we uncover that S100A7 induction by the Hippo-YAP pathway displays different characteristic in cervical and glossopharyngeal SCC. In well differentiated HCC94 cervical cells and FaDu pharyngeal cells, S100A7 is easily induced by both suspension and dense culture, which is accompanied by an increase in YAP phosphorylation and a decrease in nuclear YAP. Strikingly, these correlations of S100A7 and YAP reverse after recovery of cell attachment or relief from dense culture. Further examination finds that S100A7 induction is significantly repressed by nuclear YAP, which is validated by activation or inhibition of the Hippo pathway via loss- and/or gain-of- LATS1 and MST1 function. Subsequently, we prove that TEAD1 is required for YAP transcriptional repression of S100A7. However, S100A7 is hardly induced in poorly differentiated SiHa cervical cells and NCI-H226 pulmonary cells even in suspension or activation of the Hippo pathway. More importantly, cervical and lingual SCC tissues array analyses show that S100A7 expression displays the positive correlation with pYAP-S127 and the negative correlation with nuclear YAP in the majority of well differentiated but not in poorly differentiated tissues. Collectively, our findings demonstrate that the different induction of S100A7 toward activation of the Hippo pathway mainly depends on the degree of cell differentiation in cervical and glossopharyngeal SCC.
Collapse
Affiliation(s)
- Fei Kong
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Yunguang Li
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Enze Hu
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Rui Wang
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Junhao Wang
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jin Liu
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jinsan Zhang
- School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dacheng He
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xueyuan Xiao
- Key laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Vegfors J, Ekman AK, Stoll SW, Bivik Eding C, Enerbäck C. Psoriasin (S100A7) promotes stress-induced angiogenesis. Br J Dermatol 2016; 175:1263-1273. [PMID: 27155199 DOI: 10.1111/bjd.14718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vascular modifications occur early in the development of psoriasis, and angiogenesis is one of the key features in the pathogenesis of the disease. OBJECTIVES To identify the role of the S100 protein psoriasin in psoriasis-associated angiogenesis. METHODS The role of psoriasin in mediating angiogenesis was investigated by silencing psoriasin with small interfering RNA (siRNA) and measuring psoriasis-associated angiogenic factors in human epidermal keratinocytes. The secretion of psoriasin and the effect of psoriasin on general regulators of angiogenesis in keratinocytes, and on endothelial cell migration, proliferation, tube formation and production of angiogenic mediators, was evaluated. RESULTS Reactive oxygen species (ROS) and hypoxia induced the expression of psoriasin. Downregulation of psoriasin in keratinocytes using siRNA altered the ROS-induced expression of the psoriasis-associated angiogenic factors vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor-like growth factor, matrix metalloproteinase 1 and thrombospondin 1. Overexpression of psoriasin altered several regulators of angiogenesis and led to the secretion of psoriasin. Treatment with extracellular psoriasin induced proliferation, migration and tube formation in dermal-derived endothelial cells to a similar extent as VEGF and interleukin-17, and induced the expression and release of proangiogenic mediators. These effects were suggested to be mediated by the PI3K and nuclear factor kappa B pathways. CONCLUSIONS These findings suggest that psoriasin expression is promoted by oxidative stress in keratinocytes and amplifies the ROS-induced expression of angiogenic factors relevant to psoriasis. Moreover, extracellularly secreted psoriasin may act on dermal endothelial cells to contribute to key features angiogenesis.
Collapse
Affiliation(s)
- J Vegfors
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| | - A-K Ekman
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| | - S W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, MI, U.S.A
| | - C Bivik Eding
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| | - C Enerbäck
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med 2016; 38:1083-92. [PMID: 27573000 PMCID: PMC5029959 DOI: 10.3892/ijmm.2016.2718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
Abstract
Psoriasis is an inflammatory skin disease with or without joint involvement. In this disease, the thickened epidermis and impaired barrier are associated with altered calcium gradients. Calcium and vitamin D are known to play important roles in keratinocyte differentiation and bone metabolism. Intracellular calcium is regulated by calcium-sensing receptor (CASR), calcium release-activated calcium modulator (ORAI) and stromal interaction molecule (STIM). Other proteins modulated by vitamin D play important roles in calcium regulation e.g., calbindin 1 (CALB1) and transient receptor potential cation channel 6 (TRPV6). In this study, we aimed to investigate the expression of calcium-regulating proteins in the plaques of patients with psoriasis vulgaris with or without joint inflammation. We confirmed low calcium levels, keratinocyte hyperproliferation and an altered epidermal barrier. The CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 mRNA, as well as the sterol 27-hydroxylase (CYP27A1), 25-hydroxyvitamin D3 1-α-hydroxylase (CYP27B1) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) protein levels were low in the plaques of patients with psoriasis. We demonstrated S100 calcium-binding protein A7 (S100A7) overexpression in the plaques of patients with psoriasis vulgaris with joint inflammation, compared with those without joint involvement. We suggest an altered capacity to regulate the intracellular Ca2+ concentration ([Ca2+]i), characterized by a reduced expression of CASR, ORAI1, ORAI3, STIM1, CALB1 and TRPV6 associated with diminished levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], which may be associated with an altered balance between keratinocyte proliferation and differentiation in the psoriatic epidermis. Additionally, differences in S100A7 expression depend on the presence of joint involvement.
Collapse
Affiliation(s)
- Susana Cubillos
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| | - Johannes Norgauer
- Department of Dermatology, Jena University Hospital, D-07743 Jena, Germany
| |
Collapse
|
24
|
Son ED, Kim HJ, Kim KH, Bin BH, Bae IH, Lim KM, Yu SJ, Cho EG, Lee TR. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL-6 secretion through IκB/NF-κB signalling. Exp Dermatol 2016; 25:636-41. [PMID: 27060579 DOI: 10.1111/exd.13023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Psoriasin (S100A7), a member of the S100 protein family, is a well-known antimicrobial peptide and a signalling molecule which regulates cellular function and is highly expressed in hyperproliferative skin conditions such as atopic dermatitis (AD) and psoriasis with disrupted skin barrier function. However, its role in epidermal differentiation remains unknown. We examined the effect of S100A7 on epidermal differentiation in normal human keratinocytes (NHKs) and on a reconstituted human epidermis model. When NHKs were exposed to disruptive stimuli such as Staphylococcus aureus, ultraviolet irradiation and retinoic acid, the secretion of S100A7 into the culture medium increased and the expression of epidermal differentiation markers decreased. Treatment of NHKs with S100A7 significantly inhibited epidermal differentiation by reducing the expression of keratin 1, keratin 10, involucrin and loricrin and by increasing the expression of abnormal differentiation markers (keratin 6 and keratin 16). We verified that the MyD88-IκB/NF-κB signal cascade was activated via RAGE after S100A7 treatment, resulting in the upregulation of interleukin-6. Finally, we confirmed that S100A7 is a negative regulator of epidermal differentiation using a reconstituted human epidermis model. This study suggests that S100A7-related signalling molecules could be potent targets for recovering skin barrier function in AD and psoriasis where S100A7 is accumulated excessively.
Collapse
Affiliation(s)
- Eui Dong Son
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | | | - Kyu Han Kim
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Bum Ho Bin
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Il-Hong Bae
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Seok Jong Yu
- Korea Institute of Science and Technology Information, Dajeon, Korea
| | - Eun-Gyung Cho
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Tae Ryong Lee
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
25
|
Biddle A, Gammon L, Liang X, Costea DE, Mackenzie IC. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma. EBioMedicine 2016; 4:138-45. [PMID: 26981578 PMCID: PMC4776071 DOI: 10.1016/j.ebiom.2016.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/04/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44(high)EpCAM(low/-) CD24(+) cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs.
Collapse
Affiliation(s)
- Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Luke Gammon
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Xiao Liang
- The Gade Laboratory of Pathology, Department of Clinical Medicine, University of Bergen, Norway
| | - Daniela Elena Costea
- The Gade Laboratory of Pathology, Department of Clinical Medicine, University of Bergen, Norway
| | - Ian C. Mackenzie
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
26
|
Min HJ, Song H, Choi SY, Kim TH, Cho HJ, Yoon JH, Kim CH. Th2 cytokines differentially regulate psoriasin expression in human nasal epithelia. Am J Rhinol Allergy 2015; 28:449-53. [PMID: 25514480 DOI: 10.2500/ajra.2014.28.4087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Psoriasin is known to be expressed in diverse organs, where it exerts antimicrobial activity. Psoriasin is also involved in the local host defense mechanism against pathogens. We hypothesized that allergy-related T-helper cell type 2 (Th2) cytokines may regulate the expression of psoriasin. METHODS We treated normal human nasal epithelial (NHNE) cells with IL-4 or IL-13. Using human nasal tissues, we compared the expression level of psoriasin. We performed real-time polymerase chain reaction and Western blot assays using NHNE cells. Immunohistochemical staining and Western blot assays were performed with human nasal tissues. Furthermore, we studied the antimicrobial activity of nasal secretions from normal and allergic rhinitis patients. RESULTS IL-13 markedly down-regulated psoriasin expression at the gene and protein levels in NHNE cells, and it also decreased the amount of psoriasin protein that was secreted into the extracellular compartment in NHNE cells. IL-4 had no statistically significant effect. Results from immunohistochemical staining and Western blot assays showed that psoriasin expression was decreased in allergic rhinitis patients compared with control subjects. Nasal secretions of allergic rhinitis patients exhibited decreased antimicrobial activity compared with control subjects. CONCLUSION We found that Th2 cytokines regulated psoriasin expression in NHNE cells, and psoriasin expression was decreased in allergic rhinitis patients compared with control subjects. The decreased expression of psoriasin may be related to the reduction in antimicrobial capacity of nasal secretions under allergic conditions, resulting in an increase in susceptibility to viruses or bacterial infections.
Collapse
Affiliation(s)
- Hyun Jin Min
- Departmenrt of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Leśniak W, Graczyk-Jarzynka A. The S100 proteins in epidermis: Topology and function. Biochim Biophys Acta Gen Subj 2015; 1850:2563-72. [PMID: 26409143 DOI: 10.1016/j.bbagen.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND S100 proteins are small calcium binding proteins encoded by genes located in the epidermal differentiation complex (EDC). Differently to other proteins encoded by EDC genes, which are indispensable for normal epidermal differentiation, the role of S100 proteins in the epidermis remains largely unknown. SCOPE OF REVIEW Particular S100 proteins differ in their distribution in epidermal layers, skin appendages, melanocytes and Langerhans cells. Taking into account that each epidermal component consists of specialized cells with well-defined functions, such differential distribution may be indicative of the function of a given S100 protein. We used this criterion together with the survey of the current experimental data pertinent to epidermis to provide a fairly comprehensive view on the possible function of individual S100 proteins in this tissue. MAJOR CONCLUSIONS S100 proteins are differently expressed and, despite extensive structural homology, perform diverse functions in the epidermis. Certain S100 proteins probably ensure constant epidermal renewal and support wound healing while others act in epidermal differentiation or have a protective role. As their expression is differently affected in various skin pathologies, particular S100 proteins could be valuable diagnostic markers. GENERAL SIGNIFICANCE S100 proteins seem to be important although not yet fully recognized epidermal constituents. Better understanding of their role in the epidermis might be helpful in designing therapies to various skin diseases.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Agnieszka Graczyk-Jarzynka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
28
|
Sapkota D, Bruland O, Parajuli H, Osman TA, Teh MT, Johannessen AC, Costea DE. S100A16 promotes differentiation and contributes to a less aggressive tumor phenotype in oral squamous cell carcinoma. BMC Cancer 2015; 15:631. [PMID: 26353754 PMCID: PMC4564982 DOI: 10.1186/s12885-015-1622-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 02/01/2023] Open
Abstract
Background Altered expression of S100A16 has been reported in human cancers, but its biological role in tumorigenesis is not fully understood. This study aimed to investigate the clinical significance and functional role of S100A16 in oral squamous cell carcinoma (OSCC) suppression. Methods S100A16 mRNA and/or protein levels were examined by quantitative RT-PCR and immunohistochemistry in whole- and laser microdissected-specimens of normal human oral mucosa (NHOM, n = 65), oral dysplastic lesions (ODL, n = 21), OSCCs (n = 132) and positive cervical nodes (n = 17). S100A16 protein expression in OSCC was examined for correlations with clinicopathological variables and patient survival. S100A16 was over-expressed and knocked-down in OSCC-derived (CaLH3 and H357) cells by employing retroviral constructs to investigate its effects on cell proliferation, sphere formation and three dimensional (3D)-organotypic invasive abilities in vitro and tumorigenesis in a mouse xenograft model. Results Both S100A16 mRNA and protein levels were found to be progressively down-regulated from NHOM to ODL and OSCC. Low S100A16 protein levels in OSCC significantly correlated with reduced 10-year overall survival and poor tumor differentiation. Analysis of two external OSCC microarray datasets showed a positive correlation between the mRNA expression levels of S100A16 and keratinocyte differentiation markers. CaLH3 and H357 cell fractions enriched for differentiated cells either by lack of adherence to collagen IV or FACS sorting for low p75NTR expression expressed significantly higher S100A16 mRNA levels than the subpopulations enriched for less differentiated cells. Corroborating these findings, retroviral mediated S100A16 over-expression and knock-down in CaLH3 and H357 cells led to respective up- and down-regulation of differentiation markers. In vitro functional studies showed significant reduction in cell proliferation, sphere formation and 3D-invasive abilities of CaLH3 and H357 cells upon S100A16 over-expression. These functional effects were associated with concomitant down-regulation of self-renewal (Bmi-1 and Oct 4A) and invasion related (MMP1 and MMP9) molecules. S100A16 over-expression also suppressed tumorigenesis of H357 cells in a mouse xenograft model and the resulting tumor xenografts displayed features/expression of increased differentiation and reduced proliferation/self-renewal. Conclusions These results indicate that S100A16 is a differentiation promoting protein and might function as a tumor suppressor in OSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1622-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dipak Sapkota
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway.
| | - Ove Bruland
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, N-5021, Bergen, Norway.
| | - Himalaya Parajuli
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway.
| | - Tarig A Osman
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway.
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, England, UK.
| | - Anne C Johannessen
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Daniela Elena Costea
- Department of Clinical Medicine, The Gade Laboratory for Pathology, University of Bergen, Haukeland University Hospital, N-5021, Bergen, Norway. .,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, N-5021, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
29
|
The use of gene arrays and corresponding connectivity mapping (Cmap) to identify novel anti-ageing ingredients. Int J Cosmet Sci 2015; 37 Suppl 1:9-14. [DOI: 10.1111/ics.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
|
30
|
Regulation of Dendritic Cell Function in Inflammation. J Immunol Res 2015; 2015:743169. [PMID: 26229971 PMCID: PMC4503598 DOI: 10.1155/2015/743169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
Collapse
|
31
|
The Characteristics and Function of S100A7 Induction in Squamous Cell Carcinoma: Heterogeneity, Promotion of Cell Proliferation and Suppression of Differentiation. PLoS One 2015; 10:e0128887. [PMID: 26053695 PMCID: PMC4460013 DOI: 10.1371/journal.pone.0128887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/01/2015] [Indexed: 01/21/2023] Open
Abstract
S100A7 is highly expressed in squamous cell carcinomas (SCC) and is related to the terminal differentiation of keratinocytes. However, its characteristic and function in SCC is not very known. In this present study, we used immunohistochemistry to examine the expression of S100A7 in 452 SCC specimens, including the lung, esophagus, oral cavity, skin, cervix, bladder, and three SCC cell lines. We found that S100A7-positive staining showed significant heterogeneity in six types of SCC specimen and three SCC cell lines. Further examination found that S100A7-positive cells and its expression at mRNA and protein levels could be induced in HCC94, FaDu, and A-431 cells both in vitro and in vivo using immunohistochemistry, real-time PCR, and Western blotting. Notably, the upregulation of squamous differentiation markers, including keratin-4, keratin-13, TG-1, and involucrin, also accompanied S100A7 induction, and a similar staining pattern of S100A7 and keratin-13 was found in HCC94 cells both in vitro and in vivo. Further study revealed that the overexpression of S100A7 significantly increased proliferation and inhibited squamous differentiation in A-431 cells both in vitro and in vivo. Conversely, silencing S100A7 inhibited cell growth and survival and increased the expression of keratin-4, keratin-13, TG-1, and involucrin in HCC94 cells. Therefore, these results demonstrate that S100A7 displays heterogeneous and inducible characteristic in SCC and also provide novel evidence that S100A7 acts as a dual regulator in promoting proliferation and suppressing squamous differentiation of SCC.
Collapse
|
32
|
Li T, Qi Z, Kong F, Li Y, Wang R, Zhang W, Shang Y, Huang L, He D, Xiao X. S100A7 acts as a dual regulator in promoting proliferation and suppressing squamous differentiation through GATA-3/caspase-14 pathway in A431 cells. Exp Dermatol 2015; 24:342-8. [PMID: 25651379 DOI: 10.1111/exd.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/16/2022]
Abstract
S100A7 is expressed in many squamous cell carcinomas (SCCs), such as SCC of the skin, and well-differentiated SCC always displays stronger staining of this protein. A431 cells, an epidermal cancer cell line, were selected as a cell model to investigate the roles and mechanism of S100A7 in SCC of the skin. In this study, we demonstrated that the overexpression of S100A7 in A431 cells significantly promoted cell proliferation in vitro and tumor growth in vivo, whereas it suppressed the expression of GATA-3, caspase-14 and three squamous differentiation markers, keratin-1, TG-1 and involucrin. Conversely, the overexpression of caspase-14 not only significantly decreased cell proliferation and delayed tumor growth but also markedly induced the expression of three squamous differentiation markers, whereas S100A7 and GATA-3 were not influenced. Further evidence showed that silencing GATA-3 greatly inhibited the expression of caspase-14 and three differentiation markers, while the expression of S100A7 was not changed; contrary results were obtained when overexpressing GATA-3. Importantly, restoring the expression of GATA-3 and caspase-14 in A431-S100A7 cells could bypass the ability of S100A7 to increase cell viability and repress squamous differentiation. These data suggested that S100A7 expression in SCC may play an important role in the maintenance of SCC cell dedifferentiation, at least in SCC of the skin.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pawar H, Srikanth SM, Kashyap MK, Sathe G, Chavan S, Singal M, Manju HC, Kumar KVV, Vijayakumar M, Sirdeshmukh R, Pandey A, Prasad TSK, Gowda H, Kumar RV. Downregulation of S100 Calcium Binding Protein A9 in Esophageal Squamous Cell Carcinoma. ScientificWorldJournal 2015; 2015:325721. [PMID: 26788548 PMCID: PMC4691646 DOI: 10.1155/2015/325721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
The development of esophageal squamous cell carcinoma (ESCC) is poorly understood and the major regulatory molecules involved in the process of tumorigenesis have not yet been identified. We had previously employed a quantitative proteomic approach to identify differentially expressed proteins in ESCC tumors. A total of 238 differentially expressed proteins were identified in that study including S100 calcium binding protein A9 (S100A9) as one of the major downregulated proteins. In the present study, we carried out immunohistochemical validation of S100A9 in a large cohort of ESCC patients to determine the expression and subcellular localization of S100A9 in tumors and adjacent normal esophageal epithelia. Downregulation of S100A9 was observed in 67% (n = 192) of 288 different ESCC tumors, with the most dramatic downregulation observed in the poorly differentiated tumors (99/111). Expression of S100A9 was restricted to the prickle and functional layers of normal esophageal mucosa and localized predominantly in the cytoplasm and nucleus whereas virtually no expression was observed in the tumor and stromal cells. This suggests the important role that S100A9 plays in maintaining the differentiated state of epithelium and suggests that its downregulation may be associated with increased susceptibility to tumor formation.
Collapse
Affiliation(s)
- Harsh Pawar
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- 2Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
- 3Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India
- 4Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India
| | - Srinivas M. Srikanth
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- 5Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Manoj Kumar Kashyap
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- 6McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- 7Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- 8Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0960, USA
| | - Gajanan Sathe
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sandip Chavan
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Mukul Singal
- 9Government Medical College and Hospital, Sector 32, Chandigarh 160030, India
| | - H. C. Manju
- 3Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India
| | | | - M. Vijayakumar
- 10Department of Surgical Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India
| | - Ravi Sirdeshmukh
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Akhilesh Pandey
- 6McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- 7Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- 11Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- 12Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - T. S. Keshava Prasad
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- 5Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | - Harsha Gowda
- 1Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- *Harsha Gowda: and
| | - Rekha V. Kumar
- 3Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India
- *Rekha V. Kumar:
| |
Collapse
|
34
|
Hattori F, Kiatsurayanon C, Okumura K, Ogawa H, Ikeda S, Okamoto K, Niyonsaba F. The antimicrobial protein S100A7/psoriasin enhances the expression of keratinocyte differentiation markers and strengthens the skin's tight junction barrier. Br J Dermatol 2014; 171:742-53. [PMID: 24842328 DOI: 10.1111/bjd.13125] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND S100A7/psoriasin is a member of the S100 protein family and is encoded in the epidermal differentiation complex, which contains genes for markers of epidermal differentiation. S100A7/psoriasin is overexpressed in hyperproliferative skin diseases, where it is believed not only to exhibit antimicrobial functions, but also to induce immunomodulatory activities, including chemotaxis and cytokine/chemokine production. OBJECTIVES To evaluate the effect of S100A7/psoriasin on keratinocyte differentiation and regulation of the tight junction (TJ) barrier. METHODS Expression of differentiation markers and TJ proteins in human keratinocytes was determined by real-time polymerase chain reaction and Western blot. The changes in TJ barrier function were assessed by transepithelial electrical resistance and paracellular permeability assays. Glycogen synthase kinase-3 (GSK-3) and mitogen-activated protein kinase (MAPK) activation was analysed by Western blot, whereas β-catenin and E-cadherin activation was evaluated by Western blot and immunofluorescence. RESULTS S100A7/psoriasin enhanced the expression of several differentiation markers and selectively increased the expression of TJ proteins (e.g. claudins and occludin), which are known to strengthen the TJ barrier. Furthermore, S100A7/psoriasin increased β-catenin and E-cadherin accumulation at cell-cell contact, and enhanced transepithelial electrical resistance while reducing the paracellular permeability of keratinocyte layers. The data suggest that S100A7/psoriasin-mediated regulation of the TJ barrier was via both the GSK-3 and MAPK pathways, as evidenced by the inhibitory effects of inhibitors for GSK-3 and MAPKs. CONCLUSIONS Our finding that S100A7/psoriasin regulates differentiation and strengthens TJ barrier function provides novel evidence that, in addition to antimicrobial and immunoregulatory activities, S100A7/psoriasin is involved in skin innate immunity.
Collapse
Affiliation(s)
- F Hattori
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Mikimoto Pharmaceutical, Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Fujiwara R, Takenaka S, Hashimoto M, Narawa T, Itoh T. Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders. Sci Rep 2014; 4:5251. [PMID: 24918694 PMCID: PMC4052716 DOI: 10.1038/srep05251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022] Open
Abstract
Solute carrier (SLC) transporters play important roles in absorption and disposition of drugs in cells; however, the expression pattern of human SLC transporters in the skin has not been determined. In the present study, the expression patterns of 28 human SLC transporters were determined in the human skin. Most of the SLC transporter family members were either highly or moderately expressed in the liver, while their expression was limited in the skin and small intestine. Treatment of human keratinocytes with a reactive metabolite of ibuprofen significantly reduced cell viability. Expression array analysis revealed that S100 calcium binding protein A7A (S100A7A) was induced nearly 50-fold in dermal cells treated with ibuprofen acyl-glucuronide. Determination of the expression of drug-metabolizing enzymes as well as drug transporters prior to the administration of drugs would make it possible to avoid the development of idiosyncratic skin diseases in individuals.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, JAPAN
| | - Saya Takenaka
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, JAPAN
| | - Mitsuhiro Hashimoto
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, JAPAN
| | - Tomoya Narawa
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, JAPAN
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, JAPAN
| |
Collapse
|
36
|
McNeill E, Hogg N. S100A9 has a protective role in inflammation-induced skin carcinogenesis. Int J Cancer 2014; 135:798-808. [PMID: 24436096 DOI: 10.1002/ijc.28725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
The S100A8/A9 heterodimer is expressed by myeloid cells where its function has been extensively investigated. Immune cell S100A8/A9 promotes proinflammatory effects, and its absence is often associated with lack of leukocyte recruitment resulting in protection in terms of disease progression. S100A8/A9 is also expressed by certain epithelia, either constitutively as in mucosal epithelia or following stimulation as in skin keratinocytes. The role of the heterodimer in this context has not been as frequently explored. In this study, the incidence of skin papillomas induced by 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) in S100a9(-/-) mice has been investigated. Unlike the immune disorders and certain models of cancer, absence of S100A8/A9 caused an increased incidence in skin of papillomas and, subsequently, squamous cell carcinomas. Although associated in S100a9(-/-) mice with increased recruitment of neutrophils and T cells, a bone marrow chimera experiment revealed the major defect to be primarily due to the absence of S100A8/A9 in the skin keratinocytes. S100a9(-/-) skin displayed enhanced Ki-67 expression over the time period of appearance of the papillomas suggesting an effect of S100A8/A9 in regulating proliferation in the epidermal layer. Thus, despite immune cell recruitment in S100a9(-/-) mouse skin that might have been predicted to promote tumor growth, it was the absence of S100A8/A9 in skin keratinocytes that dominated in terms of papilloma formation. The study highlights the importance of the S100A8/A9-expressing skin epidermal layer in controlling skin tumor formation and suggests that the influence of the heterodimer is dependent on the tissue context in which it is expressed.
Collapse
Affiliation(s)
- Eileen McNeill
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | | |
Collapse
|
37
|
Zhu L, Kohda F, Nakahara T, Chiba T, Tsuji G, Hachisuka J, Ito T, Tu Y, Moroi Y, Uchi H, Furue M. Aberrant expression of S100A6 and matrix metalloproteinase 9, but not S100A2, S100A4, and S100A7, is associated with epidermal carcinogenesis. J Dermatol Sci 2013; 72:311-9. [PMID: 23993025 DOI: 10.1016/j.jdermsci.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND S100 proteins belong to a family of calcium-binding proteins that regulate cell proliferation and differentiation. Despite our growing knowledge about the biology of S100 proteins in some human cancers, little is known about the expression of S100 family members in epidermal tumors and their clinical significance. OBJECTIVE To determine the expression of S100A2, S100A4, S100A6, S100A7, as well as matrix metalloproteinases 9 (MMP9) in a spectrum of epidermal tumors with benign and malignant characteristics. METHODS Immunohistological staining was performed for S100A2, S100A4, S100A6, S100A7, and MMP9 in 101 cases of various types of epidermal tumors, viz., squamous cell carcinoma (SCC), Bowen's disease (BD), actinic keratosis (AK), basal cell carcinoma (BCC), keratoacanthoma (KA), and seborrheic keratosis (SK). Thirteen specimens of normal skin (NS) served as control. RESULTS S100A2, S100A6, and S100A7 positive immunostaining was variably observed in different epidermal tumors. S100A4 staining was not observed in any epidermal tumors, but was clearly visible in dendritic cells. MMP9 immunostaining was positive only in 22/26 (84.62%) of SCC and 2/15 (13.33%) of BD cases. Expression of S100A2, S100A6, and S100A7 was increased in tumor cells compared to NS. However, only S100A6 expression was significantly associated with malignant transformation of epidermal tumors. Moreover, S100A6 expression was correlated with MMP9 expression in metastatic SCC. CONCLUSIONS Epidermal tumors show increased expression of S100A2 and S100A7 proteins. S100A4 may be a useful and distinct marker for epidermal dendritic cells. Expression of S100A6 and MMP9 in combination is associated with the development of SCC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Dermatology, Kyushu University, Fukuoka, Japan; Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hattinger E, Zwicker S, Ruzicka T, Yuspa SH, Wolf R. Opposing functions of psoriasin (S100A7) and koebnerisin (S100A15) in epithelial carcinogenesis. Curr Opin Pharmacol 2013; 13:588-94. [PMID: 23664757 DOI: 10.1016/j.coph.2013.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 12/22/2022]
Abstract
The S100 protein family is involved in epithelial cell maturation and inflammation. Some S100 members are dysregulated during carcinogenesis and have been established as tumor markers. Psoriasin (S100A7) and koebnerisin (S100A15) are highly homologous proteins that have been first described in psoriasis, which is characterized by disturbed epidermal maturation and chronic inflammation. Despite their homology, both S100 proteins are distinct in expression and function through different receptors but synergize as chemoattractants and pro-inflammatory 'alarmins' to promote inflammation. Psoriasin and koebnerisin are further regulated with tumor progression in epithelial cancers. In tumor cells, high cytoplasmic expression of psoriasin and koebnerisin may prevent oncogenic activity, whereas their nuclear translocation and extracellular secretion are associated with tumor progression and poor prognosis. The present review outlines these opposing effects of psoriasin and koebnerisin in multifunctional pathways and mechanisms that are known to affect tumor cells ('seeds'), tumor environment ('soil') and tumor cell metastasis ('seeding') thereby influencing epithelial carcinogenesis.
Collapse
Affiliation(s)
- Eva Hattinger
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | |
Collapse
|
39
|
Vegfors J, Petersson S, Kovács A, Polyak K, Enerbäck C. The expression of Psoriasin (S100A7) and CD24 is linked and related to the differentiation of mammary epithelial cells. PLoS One 2012; 7:e53119. [PMID: 23300877 PMCID: PMC3531385 DOI: 10.1371/journal.pone.0053119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022] Open
Abstract
Psoriasin (S100A7), a member of the S100 family of calcium-binding proteins, is highly expressed in high-grade ductal carcinoma in situ (DCIS) and in the benign hyperproliferative skin disorder psoriasis. The gene that encodes psoriasin and many other S100 genes are located within a gene cluster on chromosome region 1q21, known as the epidermal differentiation complex. This cluster contains genes for several differentiation markers that play important roles in the terminal differentiation of the epidermis. The purpose of the present study was to evaluate the role of psoriasin in the differentiation process of mammary epithelial cells. Normal mammary epithelial cells (MCF10A) cultured in confluence and suspension, conditions known to induce psoriasin expression, demonstrated a shift towards a more differentiated phenotype indicated by an increase in the expression of the luminal differentiation markers CD24 and MUC1 and the reduced expression of the breast stem cell marker CD44. The expression of psoriasin and MUC1 was most pronounced in the CD24+-enriched fraction of confluent MCF10A cells. The shift towards a more differentiated phenotype was abolished upon the downregulation of psoriasin using short hairpin RNA (shRNA) and small interfering RNA (siRNA). Using specific inhibitors, we showed that psoriasin and CD24 expression was regulated by reactive oxygen species (ROS) and the nuclear factor (NF)-κB signaling pathways. While immunohistochemical analyses of DCIS showed heterogeneity, the expression of psoriasin and CD24 showed a similar staining pattern. Our findings suggest that the expression of psoriasin is linked to the luminal differentiation marker CD24 in mammary epithelial cells. Psoriasin demonstrated an essential role in the shift towards a more differentiated CD24+ phenotype, supporting the hypothesis that psoriasin plays a role in the differentiation of luminal mammary epithelial cells.
Collapse
Affiliation(s)
- Jenny Vegfors
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Stina Petersson
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anikó Kovács
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
40
|
Gittler JK, Shemer A, Suárez-Fariñas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, Mitsui H, Cardinale I, de Guzman Strong C, Krueger JG, Guttman-Yassky E. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2012; 130:1344-54. [PMID: 22951056 PMCID: PMC3991245 DOI: 10.1016/j.jaci.2012.07.012] [Citation(s) in RCA: 657] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease with an increasing prevalence. The primary pathogenesis of the disease is still elusive, resulting in the lack of specific treatments. AD is currently considered a biphasic disease, with T(H)2 predominating in acute disease and a switch to T(H)1 characterizing chronic disease. Elucidation of the molecular factors that participate in the onset of new lesions and maintenance of chronic disease is critical for the development of targeted therapeutics. OBJECTIVES We sought to characterize the mechanisms underlying the onset and maintenance of AD. METHODS We investigated intrapersonal sets of transcriptomes from nonlesional skin and acute and chronic lesions of 10 patients with AD through genomic, molecular, and cellular profiling. RESULTS Our study associated the onset of acute lesions with a striking increase in a subset of terminal differentiation proteins, specifically the cytokine-modulated S100A7, S100A8, and S100A9. Acute disease was also associated with significant increases in gene expression levels of major T(H)22 and T(H)2 cytokines and smaller increases in IL-17 levels. A lesser induction of T(H)1-associated genes was detected in acute disease, although some were significantly upregulated in chronic disease. Further significant intensification of major T(H)22 and T(H)2 cytokines was observed between acute and chronic lesions. CONCLUSIONS Our data identified increased S100A7, S100A8, and S100A9 gene expression with AD initiation and concomitant activation of T(H)2 and T(H)22 cytokines. Our findings support a model of progressive activation of T(H)2 and T(H)22 immune axes from the acute to chronic phases, expanding the prevailing view of pathogenesis with important therapeutic implications.
Collapse
Affiliation(s)
- Julia K. Gittler
- Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Avner Shemer
- Department of Dermatology, Tel-Hashomer Hospital and Tel-Aviv University, Tel-Aviv, Israel
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
- Center for Clinical and Translational Science, Rockefeller University, New York, NY, USA
| | | | - Kara J. Gulewicz
- Division of Dermatology, The Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Claire Q.F. Wang
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Irma Cardinale
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Cristina de Guzman Strong
- Division of Dermatology, The Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
- Department of Dermatology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Kerkhoff C, Voss A, Scholzen TE, Averill MM, Zänker KS, Bornfeldt KE. Novel insights into the role of S100A8/A9 in skin biology. Exp Dermatol 2012; 21:822-6. [PMID: 22882537 DOI: 10.1111/j.1600-0625.2012.01571.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2012] [Indexed: 12/28/2022]
Abstract
S100A8 and S100A9 belong to the damage-associated molecular pattern molecules. They are upregulated in a number of inflammatory skin disorders. Owing to their abundance in myeloid cells, the main function of S100A8/A9 has been attributed to their role in inflammatory cells. However, it is becoming increasingly clear that they also exert important roles in epithelial cells. In this review, we discuss the context-dependent function of S100A8/A9 in epithelial cells and their impact on wound healing, psoriasis and other skin diseases.
Collapse
Affiliation(s)
- Claus Kerkhoff
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, AG EXIM, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Emelianov V, Bechara F, Gläser R, Langan E, Taungjaruwinai W, Schröder J, Meyer K, Paus R. Immunohistological pointers to a possible role for excessive cathelicidin (LL‐37) expression by apocrine sweat glands in the pathogenesis of hidradenitis suppurativa/acne inversa. Br J Dermatol 2012; 166:1023-34. [DOI: 10.1111/j.1365-2133.2011.10765.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- V.U. Emelianov
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - F.G. Bechara
- Department of Dermatology and Allergology, Ruhr‐University Bochum, Bochum, Germany
| | - R. Gläser
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - E.A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- School of Translational Medicine, University of Manchester, Manchester, U.K
| | - W.M. Taungjaruwinai
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - J.M. Schröder
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - K.C. Meyer
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - R. Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- School of Translational Medicine, University of Manchester, Manchester, U.K
| |
Collapse
|
43
|
Teijeiro JM, Marini PE. S100A7 is present in human sperm and a homologous pig sperm protein interacts with sperm-binding glycoprotein (SBG). Andrologia 2011; 44 Suppl 1:772-9. [DOI: 10.1111/j.1439-0272.2011.01264.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 01/08/2023] Open
Affiliation(s)
- J. M. Teijeiro
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) y Área Biología; UNR; Rosario; Argentina
| | | |
Collapse
|
44
|
Wolf R, Ruzicka T, Yuspa SH. Novel S100A7 (psoriasin)/S100A15 (koebnerisin) subfamily: highly homologous but distinct in regulation and function. Amino Acids 2011; 41:789-96. [PMID: 20596736 PMCID: PMC6410564 DOI: 10.1007/s00726-010-0666-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/16/2010] [Indexed: 02/07/2023]
Abstract
S100A7 (psoriasin) and S100A15 (koebnerisin) were first identified in inflamed psoriatic skin. They are of major interest because of their putative functional roles in innate immunity, epidermal cell maturation, and epithelial tumorigenesis. Human S100A7 and S100A15 have lately evolved by gene duplications within the epidermal differentiation complex (chromosome 1q21) during primate evolution forming a novel S100 subfamily. Therefore, S100A7 and S100A15 are almost identical in sequence (>90%) and are difficult to discriminate. Despite their high homology, S100A7 and S100A15 are distinct in tissue distribution, regulation, and function, and thus, exemplary for the diversity within the S100 family. Their different properties are compelling reasons to discriminate S100A7 (psoriasin) and S100A15 (koebnerisin) in epithelial homeostasis, inflammation, and cancer.
Collapse
Affiliation(s)
- Ronald Wolf
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | |
Collapse
|
45
|
Gambichler T, Kobus S, Kobus A, Tigges C, Scola N, Altmeyer P, Kreuter A, Bechara FG, Skrygan M. Expression of antimicrobial peptides and proteins in etanercept-treated psoriasis patients. ACTA ACUST UNITED AC 2011; 167:163-6. [PMID: 21324346 DOI: 10.1016/j.regpep.2011.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
Abstract
Recent papers highlight the role of dysregulated expression of antimicrobial peptides and proteins (AMPs) in the pathogenesis of psoriasis. Etanercept, a blocker of the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α), is effective in the treatment of psoriasis. We aimed to evaluate the expression profiles of AMPs in psoriatic skin before and after a 6-week course of etanercept therapy. We included 12 psoriasis patients who underwent medium-dose etanercept treatment for 6weeks. At baseline and at the end of therapy immunohistochemistry from lesional skin was performed for psoriasin, LL-37, and human ß-defensin 2 (hBD-2). After 6-week treatment, the modified psoriasis area and severity index significantly decreased from 37.5±5.9 to 14±13.4. Lesional immunoreactivity scores of psoriasin, LL-37, and hBD-2 also significantly decreased after a 6-week course of etanercept. We have demonstrated that etanercept-induced improvement of psoriasic lesions is associated with a significant decline of AMP protein expression.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology, Ruhr-University Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Borrelli S, Candi E, Hu B, Dolfini D, Ravo M, Grober OMV, Weisz A, Dotto GP, Melino G, Viganò MA, Mantovani R. The p63 target HBP1 is required for skin differentiation and stratification. Cell Death Differ 2010; 17:1896-907. [PMID: 20523354 DOI: 10.1038/cdd.2010.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Genetic experiments established that p63 is crucial for the development and maintenance of pluristratified epithelia. In the RNA interference (RNAi) screening for targets of p63 in keratinocytes, we identified the transcription factor, High Mobility Group (HMG) box protein 1 (HBP1). HBP1 is an HMG-containing repressor transiently induced during differentiation of several cell lineages. We investigated the relationship between the two factors: using RNAi, overexpression, chromatin immunoprecipitations and transient transfections with reporter constructs, we established that HBP1 is directly repressed by p63. This was further confirmed in vivo by evaluating expression in p63 knockout mice and in transgenics expressing p63 in basal keratinocytes. Consistent with these findings, expression of HBP1 increases upon differentiation of primary keratinocytes and HaCaT cells in culture, and it is higher in the upper layers of human skin. Inactivation of HBP1 by RNAi prevents differentiation of keratinocytes and stratification of organotypic skin cultures. Finally, we analyzed the keratinocyte transcriptomes after HBP1 RNAi; in addition to repression of growth-promoting genes, unexpected activation of differentiation genes was uncovered, coexisting with repression of other genes involved in epithelial cornification. Our data indicate that suppression of HBP1 is part of the growth-promoting strategy of p63 in the lower layers of epidermis and that HBP1 temporally coordinates expression of genes involved in stratification, leading to the formation of the skin barrier.
Collapse
Affiliation(s)
- S Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Petersson S, Shubbar E, Yhr M, Kovacs A, Enerbäck C. Loss of ICAM-1 signaling induces psoriasin (S100A7) and MUC1 in mammary epithelial cells. Breast Cancer Res Treat 2010; 125:13-25. [PMID: 20217214 DOI: 10.1007/s10549-010-0820-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/24/2010] [Indexed: 11/25/2022]
MESH Headings
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Calgranulin A/metabolism
- Calgranulin B/metabolism
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cluster Analysis
- Collagen/metabolism
- Databases, Genetic
- Down-Regulation
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mucin-1/genetics
- Mucin-1/metabolism
- Oligopeptides/chemical synthesis
- Oligopeptides/metabolism
- RNA Interference
- S100 Calcium Binding Protein A7
- S100 Proteins/genetics
- S100 Proteins/metabolism
- Signal Transduction
- Time Factors
- Type C Phospholipases/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- S Petersson
- Department of Clinical Genetics, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Torii K, Maeda A, Saito C, Furuhashi T, Shintani Y, Shirakata Y, Morita A. UVB wavelength dependency of antimicrobial peptide induction for innate immunity in normal human keratinocytes. J Dermatol Sci 2009; 56:217-9. [DOI: 10.1016/j.jdermsci.2009.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 07/19/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
49
|
Abstract
S100 proteins are differentially expressed in tumours of epithelial origin. Little is known about their expression in melanocyte-derived tumours of neuroectodermal origin. We have analysed the expression of some S100 proteins in this line of lesions using SAGE Genie informatics, cell culture and human tumour tissue. The pattern of expression of six S100 proteins was investigated at both the mRNA and protein levels, using quantitative real-time PCR, western blotting and immunohistochemical analysis. No differential expression was observed with respect to S100A4, S100A7, S100A8, S100A9 and S100A11. In contrast, S100A10 was downregulated in three melanoma cell lines compared with normal melanocytes. Using SAGE informatics, two-dimensional displays of microarray expression data from the NCI60_Novartis cell lines displayed a positive correlation between the expression of S100A10 and the expression of the proliferation marker, Ki67. Our data suggest that S100A10, like its binding partners S100A7 and annexin A2, is an oxidant-sensitive protein. In addition, higher expression of S100A10 was detected in melanocyte cell lines with long projections compared with melanoma cell lines with small ripples. In a panel of 47 melanocyte-derived lesions comprising melanocytic naevi and melanomas, S100A10 was expressed to varying degrees in the melanocytic lesions. The antigen was primarily expressed in regions with a strong proliferating or differentiating capacity, especially in regions in or near the epidermis. We suggest that S100A10 may play a role in the regulation of the proliferation or early maturation sequence of melanocytic lesions, and that it merits further study as a potential biomarker of activity.
Collapse
|
50
|
Li Y, Liu ZL, Zhang KL, Chen XY, Kong QY, Wu ML, Sun Y, Liu J, Li H. Methylation-associated silencing of S100A4 expression in human epidermal cancers. Exp Dermatol 2009; 18:842-8. [DOI: 10.1111/j.1600-0625.2009.00922.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|