1
|
Butt AK, Patel J, Shirwany H, Mirza Q, Hoover J, Khouzam RN. Beneficial Extracardiac Effects of Cardiovascular Medications. Curr Cardiol Rev 2022; 18:e151021197270. [PMID: 34779371 PMCID: PMC9413730 DOI: 10.2174/1573403x17666211015145132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death worldwide, with cardiovascular medications being amongst the most common medications prescribed. These medications have diverse effects on the heart, vascular system, as well as other tissues and organ systems. The extra cardiovascular effects have been found to be of use in the treatment of non-cardiovascular diseases and pathologies. Minoxidil is used to manage systemic hypertension with its well-known side effect of hirsutism used to treat alopecia and baldness. Sildenafil was originally investigated as a treatment option for systemic hypertension; however, its side effect of penile erection led to it being widely used for erectile dysfunction. Alpha-1 blockers such as terazosin are indicated to treat systemic hypertension but are more commonly used for benign prostatic hyperplasia and post-traumatic stress disorder. Beta blockers are the mainstay treatment for congestive heart failure and systemic hypertension but have been found useful to help in patients with intention tremors as well as prophylaxis of migraines. Similarly, calcium channel blockers are indicated in medical expulsion therapy for ureteric calculi in addition to their cardiovascular indications. Thiazides are commonly used for treating systemic hypertension and as diuretics. Thiazides can cause hypocalciuria and hypercalcemia. This side effect has led to thiazides being used to treat idiopathic hypercalciuria and associated nephrolithiasis. Spironolactone is commonly utilized in treating heart failure and as a diuretic for edema. It's well described anti-androgen side effects have been used for acne vulgaris and hirsutism in polycystic ovarian syndrome. This review article discusses how the various extracardiovascular effects of commonly used cardiovascular medications are put to use in managing non-cardiovascular conditions.
Collapse
Affiliation(s)
- Asra K. Butt
- Department of Internal Medicine, Veteran Affairs Medical Center, Memphis, TN 38104, USA
| | - Jay Patel
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hamid Shirwany
- University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Qasim Mirza
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan Hoover
- Department of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rami N. Khouzam
- Department of Medicine, Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Masilamoni GJ, Groover O, Smith Y. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Neurobiol Dis 2016; 100:9-18. [PMID: 28042095 DOI: 10.1016/j.nbd.2016.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | - Olivia Groover
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA; Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Tully K, Bolshakov VY. Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 2010; 3:15. [PMID: 20465834 PMCID: PMC2877027 DOI: 10.1186/1756-6606-3-15] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 05/13/2010] [Indexed: 01/12/2023] Open
Abstract
Changes in synaptic strength are believed to underlie learning and memory. We explore the idea that norepinephrine is an essential modulator of memory through its ability to regulate synaptic mechanisms. Emotional arousal leads to activation of the locus coeruleus with the subsequent release of norepineprine in the brain, resulting in the enhancement of memory. Norepinephrine activates both pre- and post-synaptic adrenergic receptors at central synapses with different functional outcomes, depending on the expression pattern of these receptors in specific neural circuitries underlying distinct behavioral processes. We review the evidence for noradrenergic modulation of synaptic plasticity with consideration of how this may contribute to the mechanisms of learning and memory.
Collapse
Affiliation(s)
- Keith Tully
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, USA.
| | | |
Collapse
|