1
|
Maeda GP, Iannello M, McConie HJ, Ghiselli F, Havird JC. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution. J Evol Biol 2021; 34:1722-1736. [PMID: 34533872 DOI: 10.1111/jeb.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022]
Abstract
Mitonuclear coevolution is an important prerequisite for efficient energy production in eukaryotes. However, many bivalve taxa experience doubly uniparental inheritance (DUI) and have sex-specific mitochondrial (mt) genomes, providing a challenge for mitonuclear coevolution. We examined possible mechanisms to reconcile mitonuclear coevolution with DUI. No nuclear-encoded, sex-specific OXPHOS paralogs were found in the DUI clam Ruditapes philippinarum, refuting OXPHOS paralogy as a solution in this species. It is also unlikely that mt changes causing disruption of nuclear interactions are strongly selected against because sex-specific mt-residues or those under positive selection in M mt genes were not depleted for contacting nuclear-encoded residues. However, M genomes showed consistently higher dN /dS ratios compared to putatively ancestral F genomes in all mt OXPHOS genes and across all DUI species. Further analyses indicated that this was consistently due to relaxed, not positive selection on M vs. F mt OXPHOS genes. Similarly, selection was relaxed on the F genome of DUI species compared to species with strict maternal inheritance. Coupled with recent physiological and molecular evolution studies, we suggest that relaxed selection on M mt function limits the need to maintain mitonuclear interactions in M genomes compared to F genomes. We discuss our findings with regard to OXPHOS function and the origin of DUI.
Collapse
Affiliation(s)
- Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Hunter J McConie
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Robicheau BM, Powell AE, Del Bel L, Breton S, Stewart DT. Evidence for extreme sequence divergence between the male- and female-transmitted mitochondrial genomes in the bivalve mollusc,Modiolus modiolus(Mytilidae). J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Amy E. Powell
- Faculty of Medicine; Memorial University; Saint John's NFL Canada
| | | | - Sophie Breton
- Departement de Science Biologiques; Université de Montréal; Montreal QC Canada
| | | |
Collapse
|
3
|
Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol Biol 2012. [DOI: 10.1007/s11692-012-9195-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Ghiselli F, Milani L, Passamonti M. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae). Mol Biol Evol 2010; 28:949-61. [PMID: 20952499 DOI: 10.1093/molbev/msq271] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy.
| | | | | |
Collapse
|
5
|
Passamonti M, Ghiselli F. Doubly uniparental inheritance: two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution. DNA Cell Biol 2009; 28:79-89. [PMID: 19196051 DOI: 10.1089/dna.2008.0807] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotes have exploited several mechanisms for organelle uniparental inheritance, so this feature arose and evolved independently many times in their history. Metazoans' mitochondria commonly experience strict maternal inheritance; that is, they are only transmitted by females. However, the most noteworthy exception comes from some bivalve mollusks, in which two mitochondrial lineages (together with their genomes) are inherited: one through females (F) and the other through males (M). M and F genomes show up to 30% sequence divergence. This inheritance mechanism is known as doubly uniparental inheritance (DUI), because both sexes inherit uniparentally their mitochondria. Here, we review what we know about this unusual system, and we propose a model for evolution of DUI that might account for its origin as sex determination mechanism. Moreover, we propose DUI as a choice model to address many aspects that should be of interest to a wide range of biological subfields, such as mitochondrial inheritance, mtDNA evolution and recombination, genomic conflicts, evolution of sex, and developmental biology. Actually, as research proceeds, mitochondria appear to have acquired a central role in many fundamental processes of life, which are not only in their metabolic activity as cellular power plants, such as cell signaling, fertilization, development, differentiation, ageing, apoptosis, and sex determination. A function of mitochondria in the origin and maintenance of sex has been also proposed.
Collapse
Affiliation(s)
- Marco Passamonti
- Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
6
|
Ort BS, Pogson GH. Molecular population genetics of the male and female mitochondrial DNA molecules of the California sea mussel, Mytilus californianus. Genetics 2007; 177:1087-99. [PMID: 17720935 PMCID: PMC2034615 DOI: 10.1534/genetics.107.072934] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 08/19/2007] [Indexed: 02/06/2023] Open
Abstract
The presence of two gender-associated mitochondrial genomes in marine mussels provides a unique opportunity to investigate the dynamics of mtDNA evolution without complications inherent in interspecific comparisons. Here, we assess the relative importance of selection, mutation, and differential constraint in shaping the patterns of polymorphism within and divergence between the male (M) and female (F) mitochondrial genomes of the California sea mussel, Mytilus californianus. Partial sequences were obtained from homologous regions of four genes (nad2, cox1, atp6, and nad5) totaling 2307 bp in length. The M and F mtDNA molecules of M. californianus exhibited extensive levels of nucleotide polymorphism and were more highly diverged than observed in other mytilids (overall Tamura-Nei distances >40%). Consistent with previous studies, the M molecule had significantly higher levels of silent and replacement polymorphism relative to F. Both genomes possessed large numbers of singleton and low-frequency mutations that gave rise to significantly negative Tajima's D values. Mutation-rate scalars estimated for silent and replacement mutations were elevated in the M genome but were not sufficient to account for its higher level of polymorphism. McDonald-Kreitman tests were highly significant at all loci due to excess numbers of fixed replacement mutations between molecules. Strong purifying selection was evident in both genomes in keeping the majority of replacement mutations at low population frequencies but appeared to be slightly relaxed in M. Our results suggest that a reduction in selective constraint acting on the M genome remains the best explanation for its greater levels of polymorphism and faster rate of evolution.
Collapse
Affiliation(s)
- Brian S Ort
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
7
|
Lee T, Foighil DO. Hidden Floridian biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachidontes exustus, species complex. Mol Ecol 2004; 13:3527-42. [PMID: 15488009 DOI: 10.1111/j.1365-294x.2004.02337.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The well-documented Floridian 'Gulf/Atlantic' marine genetic disjunction provides an influential example of vicariant cladogenesis along a continental coastline for major elements of a diverse nearshore fauna. We are engaged in a two-part study that aims to place this disjunction into a regional Caribbean Basin phylogenetic perspective using the scorched mussel Brachidontes exustus as an exemplar. Our first step, documented here, is to thoroughly characterize the genetic structure of Floridian scorched mussel populations using mitochondrial (mt) and nuclear markers. Both sets of markers recovered the expected disjunction involving sister clades distributed on alternate flanks of peninsular Florida and lineage-specific mt molecular clocks placed its origin in the Pliocene. The two sister clades had distinct population genetic profiles and the Atlantic clade appears to have experienced an evolutionarily recent bottleneck, although plots of the relative estimates of N through time are consistent with its local persistence through the last Ice Age Maximum. Our primary novel result, however, was the discovery that the Gulf/Atlantic disjunction represents but one of three cryptic, nested genetic discontinuities represented in Floridian scorched mussel populations. The most pronounced phylogenetic split distinguished the Gulf and Atlantic sister clades from two additional nested cryptic sister clades present in samples taken from the southern Florida tropical marine zone. Floridian populations of B. exustus are composed of four cryptic taxa, a result consistent with the hypothesis that the Gulf/Atlantic disjunction in this morphospecies is but one of multiple latent regional genetic breakpoints.
Collapse
Affiliation(s)
- T Lee
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USA.
| | | |
Collapse
|
8
|
Korpelainen H. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 2004; 91:505-18. [PMID: 15452701 DOI: 10.1007/s00114-004-0571-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper first introduces our present knowledge of the origin of mitochondria and chloroplasts, and the organization and inheritance patterns of their genomes, and then carries on to review the evolutionary processes influencing mitochondrial and chloroplast genomes. The differences in evolutionary phenomena between the nuclear and cytoplasmic genomes are highlighted. It is emphasized that varying inheritance patterns and copy numbers among different types of genomes, and the potential advantage achieved through the transfer of many cytoplasmic genes to the nucleus, have important implications for the evolution of nuclear, mitochondrial and chloroplast genomes. Cytoplasmic genes transferred to the nucleus have joined the more strictly controlled genetic system of the nuclear genome, including also sexual recombination, while genes retained within the cytoplasmic organelles can be involved in selection and drift processes both within and among individuals. Within-individual processes can be either intra- or intercellular. In the case of heteroplasmy, which is attributed to mutations or biparental inheritance, within-individual selection on cytoplasmic DNA may provide a mechanism by which the organism can adapt rapidly. The inheritance of cytoplasmic genomes is not universally maternal. The presence of a range of inheritance patterns indicates that different strategies have been adopted by different organisms. On the other hand, the variability occasionally observed in the inheritance mechanisms of cytoplasmic genomes reduces heritability and increases environmental components in phenotypic features and, consequently, decreases the potential for adaptive evolution.
Collapse
Affiliation(s)
- Helena Korpelainen
- Department of Applied Biology, University of Helsinki, PO Box 27, 00014, Helsinki, Finland.
| |
Collapse
|
9
|
Riginos C, Hickerson MJ, Henzler CM, Cunningham CW. DIFFERENTIAL PATTERNS OF MALE AND FEMALE MTDNA EXCHANGE ACROSS THE ATLANTIC OCEAN IN THE BLUE MUSSEL, MYTILUS EDULIS. Evolution 2004. [DOI: 10.1554/04-183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Passamonti M, Boore JL, Scali V. Molecular evolution and recombination in gender-associated mitochondrial DNAs of the Manila clam Tapes philippinarum. Genetics 2003; 164:603-11. [PMID: 12807780 PMCID: PMC1462575 DOI: 10.1093/genetics/164.2.603] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doubly uniparental inheritance (DUI) provides an intriguing system for addressing aspects of molecular evolution and intermolecular recombination of mitochondrial DNA. For this reason, a large sequence analysis has been performed on Tapes philippinarum (Bivalvia, Veneridae), which has mitochondrial DNA heteroplasmy that is consistent with a DUI. The sequences of a 9.2-kb region (containing 29 genes) from 9 individuals and the sequences of a single gene from another 44 individuals are analyzed. Comparisons suggest that the two sex-related mitochondrial genomes do not experience a neutral pattern of divergence and that selection may act with varying strength on different genes. This pattern of evolution may be related to the long, separate history of M and F genomes within their tissue-specific "arenas." Moreover, our data suggest that recombinants, although occurring in soma, may seldom be transmitted to progeny in T. philippinarum.
Collapse
Affiliation(s)
- Marco Passamonti
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università degli Studi di Bologna, Italy.
| | | | | |
Collapse
|
11
|
Weinberg JR, Dahlgren TG, Trowbridge N, Halanych KM. Genetic differences within and between species of deep-sea crabs (chaceon) from the North Atlantic Ocean. THE BIOLOGICAL BULLETIN 2003; 204:318-326. [PMID: 12807708 DOI: 10.2307/1543602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The deep-sea red crab Chaceon quinquedens is a commercially important crustacean on the Atlantic continental shelf and slope of North America. To assess genetic subdivision in C. quinquedens, we examined the nucleotide sequence of the mitochondrial 16S rDNA gene and the internal transcribed spacers (ITS) of the nuclear ribosomal repeat in samples from southern New England and the Gulf of Mexico. We compared those data to sequences from two congeners, a sympatric species from the Florida coast, C. fenneri, and an allopatric eastern Atlantic species, C. affinis. The 16S rDNA data consisted of 379 aligned nucleotides obtained from 37 individuals. The greatest genetic difference among geographical groups or nominal species was between C. quinquedens from southern New England and C. quinquedens from the Gulf of Mexico. Haplotypes from these two groups had a minimum of 10 differences. All 11 C. fenneri samples matched the most common haplotype found in C. quinquedens from the Gulf of Mexico, and this haplotype was not detected in C. quinquedens from southern New England. The three haplotypes of C. affinis were unique to that recognized species, but those haplotypes differed only slightly from those of C. fenneri and C. quinquedens from the Gulf of Mexico. Based on 16S rDNA and ITS data, genetic differences between C. quinquedens from southern New England and the Gulf of Mexico are large enough to conclude that these are different fishery stocks. Our results also indicate that the designation of morphological species within the commercially important genus Chaceon is not congruent with evolutionary history. The genetic similarity of C. affinis from the eastern Atlantic and C. quinquedens from the Gulf of Mexico suggests these trans-Atlantic taxa share a more recent common history than the two populations of "C. quinquedens" that we examined.
Collapse
Affiliation(s)
- James R Weinberg
- National Marine Fisheries Service, 166 Water Street, Woods Hole, Massachusetts 02543, USA.
| | | | | | | |
Collapse
|