1
|
Panda AK, Verma V, Srivastav A, Badola R, Hussain SA. Digital image processing: A new tool for morphological measurements of freshwater turtles under rehabilitation. PLoS One 2024; 19:e0300253. [PMID: 38484004 PMCID: PMC10939246 DOI: 10.1371/journal.pone.0300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Freshwater fauna is facing an uphill task for survival in the Ganga Basin, India, due to a range of factors causing habitat degradation and fragmentation, necessitating conservation interventions. As part of the ongoing efforts to conserve the freshwater fauna of the Basin, we are working on rehabilitating rescued freshwater chelonians. We carry out various interventions to restore rescued individuals to an apparent state of fitness for their release in suitable natural habitats. Morphometric measurements are crucial to managing captive wild animals for assessing their growth and well-being. Measurements are made using manual methods like vernier caliper that are prone to observer error experience and require handling the specimens for extended periods. Digital imaging technology is rapidly progressing at a fast pace and with the advancement of technology. We acquired images of turtles using smartphones along with manual morphometric measurements using vernier calipers of the straight carapace length and straight carapace width. The images were subsequently processed using ImageJ, a freeware and compared with manual morphometric measurements. A significant decrease in the time spent in carrying out morphometric measurements was observed in our study. The difference in error in measurements was, however, not significant. A probable cause for this may have been the extensive experience of the personnel carrying out the measurements using vernier caliper. Digital image processing technology can cause a significant reduction in the stress of the animals exposed to handling during measurements, thereby improving their welfare. Additionally, this can be used in the field to carry out morphometric measurements of free-ranging individuals, where it is often difficult to capture individuals, and challenges are faced in obtaining permission to capture specimens.
Collapse
Affiliation(s)
- Ashish Kumar Panda
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vikas Verma
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| | - Anupam Srivastav
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| | - Ruchi Badola
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Syed Ainul Hussain
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| |
Collapse
|
2
|
Miller AE, Hogan BG, Stoddard MC. Color in motion: Generating 3-dimensional multispectral models to study dynamic visual signals in animals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analyzing color and pattern in the context of motion is a central and ongoing challenge in the quantification of animal coloration. Many animal signals are spatially and temporally variable, but traditional methods fail to capture this dynamism because they use stationary animals in fixed positions. To investigate dynamic visual displays and to understand the evolutionary forces that shape dynamic colorful signals, we require cross-disciplinary methods that combine measurements of color, pattern, 3-dimensional (3D) shape, and motion. Here, we outline a workflow for producing digital 3D models with objective color information from museum specimens with diffuse colors. The workflow combines multispectral imaging with photogrammetry to produce digital 3D models that contain calibrated ultraviolet (UV) and human-visible (VIS) color information and incorporate pattern and 3D shape. These “3D multispectral models” can subsequently be animated to incorporate both signaler and receiver movement and analyzed in silico using a variety of receiver-specific visual models. This approach—which can be flexibly integrated with other tools and methods—represents a key first step toward analyzing visual signals in motion. We describe several timely applications of this workflow and next steps for multispectral 3D photogrammetry and animation techniques.
Collapse
|
3
|
Irschick DJ, Christiansen F, Hammerschlag N, Martin J, Madsen P, Wyneken J, Brooks A, Gleiss A, Fossette S, Siler C, Gamble T, Fish F, Siebert U, Patel J, Xu Z, Kalogerakis E, Medina J, Mukherji A, Mandica M, Zotos S, Detwiler J, Perot B, Lauder G. 3D Visualization Processes for Recreating and Studying Organismal Form. iScience 2022; 25:104867. [PMID: 36060053 PMCID: PMC9437858 DOI: 10.1016/j.isci.2022.104867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of biological form is a vital goal of evolutionary biology and functional morphology. We review an emerging set of methods that allow scientists to create and study accurate 3D models of living organisms and animate those models for biomechanical and fluid dynamic analyses. The methods for creating such models include 3D photogrammetry, laser and CT scanning, and 3D software. New multi-camera devices can be used to create accurate 3D models of living animals in the wild and captivity. New websites and virtual reality/augmented reality devices now enable the visualization and sharing of these data. We provide examples of these approaches for animals ranging from large whales to lizards and show applications for several areas: Natural history collections; body condition/scaling, bioinspired robotics, computational fluids dynamics (CFD), machine learning, and education. We provide two datasets to demonstrate the efficacy of CFD and machine learning approaches and conclude with a prospectus.
Collapse
|
4
|
DeLorenzo L, Vander Linden A, Bergmann PJ, Wagner GP, Siler CD, Irschick DJ. Using 3D-digital photogrammetry to examine scaling of the body axis in burrowing skinks. J Morphol 2020; 281:1382-1390. [PMID: 32815588 DOI: 10.1002/jmor.21253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022]
Abstract
Three-dimensional (3D) modeling techniques have been increasingly utilized across disciplines for the visualization and analysis of complex structures. We employ 3D-digital photogrammetry for understanding the scaling of the body axis of 12 species of scincid lizards in the genus Brachymeles. These skinks represent a diverse radiation which shows tremendous variation in body size and degree of axial elongation. Because of the complex nature of the body axis, 3D-methods are important for understanding how the body axis evolves. 3D-digital photogrammetry presents a flexible, inexpensive, and portable system for the reconstruction of biological forms. As body size increased among species, the cross-sectional area and circumference of the head and other portions of the body axis increased isometrically, which indicates that species of differing sizes possess proportionally similar head and body shapes. These results suggest that there are no substantial head and body shape changes with body size among the sampled species, but further comparative studies with larger sample sizes and functional studies of size and morphology effects on burrowing or above-ground locomotion are needed.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Abby Vander Linden
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Philip J Bergmann
- Department of Biology, Clark University, Worcester, Massachusetts, USA
| | - Gunter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Duncan J Irschick
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Tsuboi M, Kopperud BT, Syrowatka C, Grabowski M, Voje KL, Pélabon C, Hansen TF. Measuring Complex Morphological Traits with 3D Photogrammetry: A Case Study with Deer Antlers. Evol Biol 2020. [DOI: 10.1007/s11692-020-09496-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractThe increasing availability of 3D-imaging technology provides new opportunities for measuring morphology. Photogrammetry enables easy 3D-data acquisition compared to conventional methods and here we assess its accuracy for measuring the size of deer antlers, a complex morphological structure. Using a proprietary photogrammetry software, we generated 3D images of antlers for 92 individuals from 29 species of cervids that vary widely in antler size and shape and used these to measure antler volume. By repeating the process, we found that the relative error averaged 8.5% of object size. Errors in converting arbitrary voxel units into real volumetric units accounted for 70% of the measurement variance and can therefore be reduced by replicating the conversion. We applied the method to clay models of known volume and found no indication of bias. The estimation was robust against variation in imaging device, distance and operator, but approximately 40 images per specimen were necessary to achieve good precision. We used the method to show that conventional measures of main-beam length are relatively poor estimators of antler volume. Using loose antlers of known weight, we also showed that the volume may be a relatively poor predictor of antler weight due to variation in bone density across species. We conclude that photogrammetry can be an efficient and accurate tool for measuring antlers, and likely many other complex morphological traits.
Collapse
|
6
|
Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci Rep 2017; 7:15828. [PMID: 29192279 PMCID: PMC5709378 DOI: 10.1038/s41598-017-15787-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Self-righting, the capacity of an animal to self-turn after falling on its back, is a fitness-related trait. Delayed self-righting can result in loss of mating opportunities or death. Traits involved in self-righting may therefore be under selection. Galápagos giant tortoises have two main shell morphologies - saddleback and domed – that have been proposed to be adaptive. The more sloped shape on the sides of the shell and the longer extension of neck and legs of the saddlebacks could have evolved to optimize self-righting. The drier environments with more uneven surfaces where the saddleback tortoises occur increases their risk to fall on their back while walking. The ability to fast overturn could reduce the danger of dying. To test this hypothesis, we used 3D shell reconstructions of 89 Galápagos giant tortoises from three domed and two saddleback species to compare self-righting potential of the two shell morphotypes. Our results indicate that saddleback shells require higher energy input to self-right than domed ones. This suggests that several traits associated with the saddleback shell morphology could have evolved to facilitate self-righting. Studying the functional performances of fitness-related traits, as in this work, could provide important insight into the adaptive value of traits.
Collapse
|
7
|
Regis KW, Meik JM. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 2017; 5:e2914. [PMID: 28149687 PMCID: PMC5267567 DOI: 10.7717/peerj.2914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. METHODS We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. RESULTS Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. DISCUSSION Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.
Collapse
Affiliation(s)
- Koy W Regis
- Department of Biological Sciences, Tarleton State University , Stephenville , TX , United States
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University , Stephenville , TX , United States
| |
Collapse
|
8
|
Muñoz-Muñoz F, Quinto-Sánchez M, González-José R. Photogrammetry: a useful tool for three-dimensional morphometric analysis of small mammals. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Spain
| | - Mirsha Quinto-Sánchez
- Centro Nacional Patagónico; Consejo Nacional de Investigaciones Científicas y Técnicas; Puerto Madryn Argentina
| | - Rolando González-José
- Centro Nacional Patagónico; Consejo Nacional de Investigaciones Científicas y Técnicas; Puerto Madryn Argentina
| |
Collapse
|
9
|
Local iterative DLT soft-computing vs. interval-valued stereo calibration and triangulation with uncertainty bounding in 3D reconstruction. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
“Photozoometer”: A new photogrammetric system for obtaining morphometric measurements of elusive animals. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Intra and Interspecific Variation in Cranial Morphology on the Southernmost Distributed Cebus (Platyrrhini, Primates) Species. J MAMM EVOL 2013. [DOI: 10.1007/s10914-013-9249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Sonnweber RS, Stobbe N, Zavala Romero O, Slice DE, Fieder M, Wallner B. A new method for the analysis of soft tissues with data acquired under field conditions. PLoS One 2013; 8:e67521. [PMID: 23826315 PMCID: PMC3691197 DOI: 10.1371/journal.pone.0067521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
Analyzing soft-tissue structures is particularly challenging due to the lack of homologous landmarks that can be reliably identified across time and specimens. This is particularly true when data are to be collected under field conditions. Here, we present a method that combines photogrammetric techniques and geometric morphometrics methods (GMM) to quantify soft tissues for their subsequent volumetric analysis. We combine previously developed methods for landmark data acquisition and processing with a custom program for volumetric computations. Photogrammetric methods are a particularly powerful tool for field studies as they allow for image acquisition with minimal equipment requirements and for the acquisition of the spatial coordinates of points (anatomical landmarks or others) from these images. For our method, a limited number of homologous landmarks, i.e., points that can be found on any specimen independent of space and time, and further distinctive points, which may vary over time, space and subject, are identified on two-dimensional photographs and their three-dimensional coordinates estimated using photogrammetric methods. The three-dimensional configurations are oriented by the spatial principal components (PCs) of the homologous points. Crucially, this last step orients the configuration such that x and y-information (PC1 and PC2 coordinates) constitute an anatomically-defined plane with the z-values (PC3 coordinate) in the direction of interest for volume computation. The z-coordinates are then used to estimate the volume of the tissue. We validate our method using a physical, geometric model of known dimensions and physical (wax) models designed to approximate perineal swellings in female macaques. To demonstrate the usefulness and potential of our method, we use it to estimate the volumes of Barbary macaque sexual swellings recorded in the field with video images. By analyzing both the artificial data and real monkey swellings, we validate our method's accuracy and illustrate its potential for application in important areas of biological research.
Collapse
Affiliation(s)
- Ruth S Sonnweber
- Department of Cognitive Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
13
|
Chapman TF. Relic bilby (Macrotis lagotis) refuge burrows: assessment of potential contribution to a rangeland restoration program. RANGELAND JOURNAL 2013. [DOI: 10.1071/rj13012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In harsh, resource-limited rangelands, plants and other structures, such as animal burrows, can ameliorate extreme microclimate conditions and increase resource availability for other species. The aim of this study was to determine whether relic bilby (Macrotis lagotis) refuge burrows had the potential to contribute to a rangeland restoration program by moderating microclimate and accumulating resources. During the day, the burrows maintained significantly higher relative humidity than control microsites. At night, temperature was significantly higher and humidity was significantly lower in the burrows than the control microsites. Both temperature and humidity were also significantly less variable in the burrows. There was some overlap between burrows and control microsites in soil chemistry, but burrows were significantly higher in soil moisture, pH(CaCl2), exchangeable magnesium, exchangeable potassium, mineral nitrogen, and total cation exchange capacity, and significantly lower in bio-available aluminium. Soils in burrows contained three times more mineral nitrogen, which has been previously shown to increase plant diversity and abundance in the presence of additional moisture. These results suggest the relic bilby burrows could potentially provide more suitable habitats for the establishment and productivity of other species by moderating microclimates, accumulating nutrients and soil moisture, and ameliorating the potentially detrimental effects of bio-available aluminium.
Collapse
|
14
|
Chiari Y, Claude J. Morphometric identification of individuals when there are more shape variables than reference specimens: a case study in Galápagos tortoises. C R Biol 2012; 335:62-8. [PMID: 22226164 DOI: 10.1016/j.crvi.2011.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 10/14/2022]
Abstract
Molecular biology techniques are useful for taxonomic assignment, but they are not always accessible and can be expensive and time consuming to perform. Morphological methods to identify the origin of individuals could be valuable if they can be performed rapidly, accurately, and with minimal resources. In order to correctly assign the origin of individuals from two distinct tortoise lineages, we studied here the accuracy of shape statistics depending on the inclusion of different numbers of shape components. Misleading assignment may occur if an optimal balance between the number of shape variables and the number of sampled individuals is not respected, especially when more variables than specimens are available. Assignment of museum samples of unknown origin suggests that they mostly belong to only one of the two lineages.
Collapse
Affiliation(s)
- Ylenia Chiari
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Campus Agrário de Vairão, Portugal.
| | | |
Collapse
|
15
|
Poulakakis N, Russello M, Geist D, Caccone A. Unravelling the peculiarities of island life: vicariance, dispersal and the diversification of the extinct and extant giant Galápagos tortoises. Mol Ecol 2011; 21:160-73. [PMID: 22098061 DOI: 10.1111/j.1365-294x.2011.05370.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In isolated oceanic islands, colonization patterns are often interpreted as resulting from dispersal rather than vicariant events. Such inferences may not be appropriate when island associations change over time and new islands do not form in a simple linear trend. Further complexity in the phylogeography of ocean islands arises when dealing with endangered taxa as extinctions, uncertainty on the number of evolutionary 'units', and human activities can obscure the progression of colonization events. Here, we address these issues through a reconstruction of the evolutionary history of giant Galápagos tortoises, integrating DNA data from extinct and extant species with information on recent human activities and newly available geological data. Our results show that only three of the five extinct or nearly extinct species should be considered independent evolutionary units. Dispersal from mainland South America started at approximately 3.2 Ma after the emergence of the two oldest islands of San Cristobal and Española. Dispersal from older to younger islands began approximately 1.74 Ma and was followed by multiple colonizations from different sources within the archipelago. Vicariant events, spurred by island formation, coalescence, and separation, contributed to lineage diversifications on Pinzón and Floreana dating from 1.26 and 0.85 Ma. This work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and highlights the need to take into account both vicariance and dispersal when dealing with organisms from islands whose associations are not simply explained by a linear emergence model.
Collapse
Affiliation(s)
- Nikos Poulakakis
- Molecular Systematics Lab, Natural History Museum of Crete, University of Crete, Iraklion, Crete.
| | | | | | | |
Collapse
|
16
|
Macale D, Venchi A, Scalici M. Shell shape and size variation in the Egyptian tortoiseTestudo kleinmanni(Testudinidae, Testudines). FOLIA ZOOLOGICA 2011. [DOI: 10.25225/fozo.v60.i2.a11.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniele Macale
- Fondazione Bioparco Roma, viale del Giardino Zoologico 20, 00197 Rome, Italy
| | | | - Massimiliano Scalici
- Dipartimento di Biologia, Università degli Studi “Roma Tre”, viale Guglielmo Marconi 446, 00146 Rome, Italy
| |
Collapse
|
17
|
Chiari Y, Claude J. Study of the carapace shape and growth in two Galápagos tortoise lineages. J Morphol 2011; 272:379-86. [PMID: 21246597 DOI: 10.1002/jmor.10923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 11/08/2022]
Abstract
Galápagos tortoises possess two main shell forms, domed and saddleback, that correlate with the biogeographic history of this species group. However, the lack of description of morphological shell variation within and among populations has prevented the understanding of the contribution of evolutionary forces and the potential role of ontogeny in shaping morphological shell differences. Here, we analyze two lineages of Galápagos tortoises inhabiting Santa Cruz Island by applying geometric morphometrics in combination with a photogrammetry 3D reconstruction method on a set of tortoises of different ages (from juvenile to adult). The aim of this study is to describe morphological features on the carapace that could be used for taxonomic recognition by taking into account confounding factors, such as the morphological changes occurring during growth. Our results indicate that despite the shared similarities of growth patterns and of morphological changes observed during growth, the two lineages and the different sexes can be distinguished on the basis of distinct carapace features. Lineages differ by the shape of the vertebral (especially concerning their width) and pleural scutes, with one lineage having a more compressed carapace shape, whereas the other possesses a carapace that is more elongated and expanded toward the sides as well as an higher positioning of the first vertebral scute. Furthermore, females have a more elongated and wider carapace shape than males. Finally, carapace shape changes with growth, with vertebral scutes becoming narrower and pleural scutes becoming larger during late ontogeny.
Collapse
Affiliation(s)
- Ylenia Chiari
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106, USA.
| | | |
Collapse
|