1
|
Zhang YD, Ji XB, Zong J, Dai XF, Klosterman SJ, Subbarao KV, Zhang DD, Chen JY. Functional analysis of the mating type genes in Verticillium dahliae. BMC Biol 2024; 22:108. [PMID: 38714997 PMCID: PMC11077750 DOI: 10.1186/s12915-024-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.
Collapse
Affiliation(s)
- Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Bin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Juan Zong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
2
|
Abstract
Genetic exchange between different Leishmania strains in the sand fly vector has been experimentally demonstrated and is supported by population genetic studies. In nature, opportunities for Leishmania interstrain mating are restricted to flies biting multiply infected hosts or through multiple bites of different hosts. In contrast, self-mating could occur in any infected sand fly. By crossing two recombinant lines derived from the same Leishmania major strain, each expressing a different drug-resistance marker, self-hybridization in L. major was confirmed in a natural sand fly vector, Phlebotomus duboscqi, and in frequencies comparable to interstrain crosses. We provide the first high resolution, whole-genome sequencing analysis of large numbers of selfing progeny, their parents, and parental subclones. Genetic exchange consistent with classical meiosis is supported by the biallelic inheritance of the rare homozygous single nucleotide polymorphisms (SNPs) that arose by mutation during the generation of the parental clones. In contrast, heterozygous SNPs largely failed to be transmitted in Mendelian ratios for reasons not understood. SNPs that were heterozygous in both parents, however, recombined to produce homozygous alleles in some hybrids. For trisomic chromosomes present in both parents, transmittal to the progeny was only altered by self-hybridization, involving a gain or loss of somy in frequencies predicted by a meiotic process. Whole-genome polyploidization was also observed in the selfing progeny. Thus, self-hybridization in Leishmania, with its potential to occur in any infected sand fly, may be an important source of karyotype variation, loss of heterozygosity, and functional diversity. IMPORTANCE Leishmania are parasitic protozoa that cause a wide spectrum of diseases collectively known as the leishmaniases. Sexual reproduction in Leishmania has been proposed as an important source of genetic diversity and has been formally demonstrated to occur inside the sand fly vector midgut. Nevertheless, in the wild, opportunities for genetic exchange between different Leishmania species or strains are restricted by the capacity of different Leishmania strains to colonize the same sand fly. In this work, we report the first high resolution, whole-genome sequence analysis of intraclonal genetic exchange as a type of self-mating in Leishmania. Our data reveal that self-hybridization can occur with comparable frequency as interstrain mating under experimental lab conditions, leading to important genomic alterations that can potentially take place within every naturally infected sand fly.
Collapse
|
3
|
Biological Characteristics of Verticillium dahliae MAT1-1 and MAT1-2 Strains. Int J Mol Sci 2021; 22:ijms22137148. [PMID: 34281204 PMCID: PMC8269371 DOI: 10.3390/ijms22137148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Verticillium dahliae is a soil-borne plant pathogenic fungus that causes Verticillium wilt on hundreds of dicotyledonous plant species. V. dahliae is considered an asexually (clonal) reproducing fungus, although both mating type idiomorphs (MAT1-1 and MAT1-2) are present, and is heterothallic. Most of the available information on V. dahliae strains, including their biology, pathology, and genomics comes from studies on isolates with the MAT1-2 idiomorph, and thus little information is available on the MAT1-1 V. dahliae strains in the literature. We therefore evaluated the growth responses of MAT1-1 and MAT1-2 V. dahliae strains to various stimuli. Growth rates and melanin production in response to increased temperature, alkaline pH, light, and H2O2 stress were higher in the MAT1-2 strains than in the MAT1-1 strains. In addition, the MAT1-2 strains showed an enhanced ability to degrade complex polysaccharides, especially starch, pectin, and cellulose. Furthermore, several MAT1-2 strains from both potato and sunflower showed increased virulence on their original hosts, relative to their MAT1-1 counterparts. Thus, compared to MAT1-1 strains, MAT1-2 strains derive their potentially greater fitness from an increased capacity to adapt to their environment and exhibit higher virulence. These competitive advantages might explain the current abundance of MAT1-2 strains relative to MAT1-1 strains in the agricultural and sylvicultural ecosystems, and this study provides the baseline information on the two mating idiomorphs to study sexual reproduction in V. dahliae under natural and laboratory conditions.
Collapse
|
4
|
Boyer L, Jabbour-Zahab R, Mosna M, Haag CR, Lenormand T. Not so clonal asexuals: Unraveling the secret sex life of Artemia parthenogenetica. Evol Lett 2021; 5:164-174. [PMID: 33868712 PMCID: PMC8045904 DOI: 10.1002/evl3.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The maintenance of sex is paradoxical as sexual species pay the “twofold cost of males” and should thus quickly be replaced by asexual mutants reproducing clonally. However, asexuals may not be strictly clonal and engage in “cryptic sex,” challenging this simple scenario. We study the cryptic sex life of the brine shrimp Artemia parthenogenetica, which has once been termed an “ancient asexual” and where no genetic differences have ever been observed between parents and offspring. This asexual species rarely produces males, which can hybridize with sexual females of closely related species and transmit asexuality to their offspring. Using such hybrids, we show that recombination occurs in asexual lineages, causing loss‐of‐heterozygosity and parent‐offspring differences. These differences cannot generally be observed in field‐sampled asexuals because once heterozygosity is lost, subsequent recombination leaves no footprint. Furthermore, using extensive paternity tests, we show that hybrid females can reproduce both sexually and asexually, and transmit asexuality to both sexually and asexually produced offspring in a dominant fashion. Finally, we show that, contrary to previous reports, field‐sampled asexual females also rarely reproduce sexually (rate ∼2‰). Overall, most previously known facts about Artemia asexuality turned out to be erroneous. More generally, our findings suggest that the evidence for strictly clonal reproduction of asexual species needs to be reconsidered, and that rare sex and consequences of nonclonal asexuality, such as gene flow within asexuals, need to be more widely taken into account in more realistic models for the maintenance of sex and the persistence of asexual lineages.
Collapse
Affiliation(s)
- Loreleï Boyer
- CEFE Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Roula Jabbour-Zahab
- CEFE Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Marta Mosna
- CEFE Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Christoph R Haag
- CEFE Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Thomas Lenormand
- CEFE Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| |
Collapse
|
5
|
Martel SI, Ossa CG, Simon J, Figueroa CC, Bozinovic F. Latitudinal trend in the reproductive mode of the pea aphid Acyrthosiphon pisum invading a wide climatic range. Ecol Evol 2020; 10:8289-8298. [PMID: 32788979 PMCID: PMC7417215 DOI: 10.1002/ece3.6536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
The maintenance of sexuality is a puzzling phenomenon in evolutionary biology. Many universal hypotheses have been proposed to explain the prevalence of sex despite its costs, but it has been hypothesized that sex could be also retained by lineage-specific mechanisms that would confer some short-term advantage. Aphids are good models to study the maintenance of sex because they exhibit coexistence of both sexual and asexual populations within the same species and because they invade a large variety of ecosystems. Sex in aphids is thought to be maintained because only sexually produced eggs can persist in cold climates, but whether sex is obligate or facultative depending on climatic conditions remains to be elucidated. In this study, we have inferred the reproductive mode of introduced populations of the pea aphid Acyrthosiphon pisum in Chile along a climatic gradient using phenotypic assays and genetic-based criteria to test the ecological short-term advantage of sex in cold environments. Our results showed a latitudinal trend in the reproductive mode of Chilean pea aphid population from obligate parthenogenesis in the north to an intermediate life cycle producing both parthenogenetic and sexual progeny in the southernmost locality, where harsh winters are usual. These findings are congruent with the hypothesis of the ecological short-term advantage of sex in aphids.
Collapse
Affiliation(s)
- Sebastián I. Martel
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiago de ChileChile
| | - Carmen G. Ossa
- Instituto de BiologíaFacultad de CienciasUniversidad de ValparaísoValparaísoChile
| | | | - Christian C. Figueroa
- Instituto de Ciencias BiológicasCenter for Molecular and Functional Ecology in Agroecosystems (CEMF)Universidad de TalcaTalcaChile
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiago de ChileChile
| |
Collapse
|
6
|
Athanasio CG, Sommer U, Viant MR, Chipman JK, Mirbahai L. Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:556-568. [PMID: 29623456 PMCID: PMC6010494 DOI: 10.1007/s10646-018-1927-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 05/28/2023]
Abstract
Short-term exposures at critical stages of development can lead to delayed adverse effects long after the initial stressor has been removed, a concept referred to as developmental origin of adult disease. This indicates that organisms' phenotypes may epigenetically reflect their past exposure history as well as reflecting chemicals currently present in their environment. This concept has significant implications for environmental monitoring. However, there is as yet little or no implementation of epigenetics in environmental risk assessment. In a proof-of-principle study we exposed Daphnia magna to 5-azacytidine, a known DNA de-methylating agent. Exposures covered combinations of prenatal and postnatal exposures as well as different exposure durations and recovery stages. Growth, the transcription of genes and levels of metabolites involved in regulating DNA methylation, and methylation levels of several genes were measured. Our data shows that prenatal exposures caused significant changes in the methylome of target genes, indicating that prenatal stages of Daphnia are also susceptible to same level of change as post-natal stages of Daphnia. While the combination of pre- and postnatal exposures caused the most extreme reduction in DNA methylation compared to the control group. Furthermore, some of the changes in the methylation patterns were persistent even after the initial stressor was removed. Our results suggest that epigenetic biomarkers have the potential to be used as indicators of past chemical exposure history of organisms and provide strong support for implementing changes to the current regimes for chemical risk assessment to mimic realistic environmental scenarios.
Collapse
Affiliation(s)
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark R Viant
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James Kevin Chipman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Leda Mirbahai
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Toman J, Flegr J. General environmental heterogeneity as the explanation of sexuality? Comparative study shows that ancient asexual taxa are associated with both biotically and abiotically homogeneous environments. Ecol Evol 2018; 8:973-991. [PMID: 29375771 PMCID: PMC5773305 DOI: 10.1002/ece3.3716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022] Open
Abstract
Ecological theories of sexual reproduction assume that sexuality is advantageous in certain conditions, for example, in biotically or abiotically more heterogeneous environments. Such theories thus could be tested by comparative studies. However, the published results of these studies are rather unconvincing. Here, we present the results of a new comparative study based exclusively on the ancient asexual clades. The association with biotically or abiotically homogeneous environments in these asexual clades was compared with the same association in their sister, or closely related, sexual clades. Using the conservative definition of ancient asexuals (i.e., age >1 million years), we found eight pairs of taxa of sexual and asexual species, six differing in the heterogeneity of their inhabited environment on the basis of available data. The difference between the environmental type associated with the sexual and asexual species was then compared in an exact binomial test. The results showed that the majority of ancient asexual clades tend to be associated with biotically, abiotically, or both biotically and abiotically more homogeneous environments than their sexual controls. In the exploratory part of the study, we found that the ancient asexuals often have durable resting stages, enabling life in subjectively homogeneous environments, live in the absence of intense biotic interactions, and are very often sedentary, inhabiting benthos, and soil. The consequences of these findings for the ecological theories of sexual reproduction are discussed.
Collapse
Affiliation(s)
- Jan Toman
- Faculty of ScienceLaboratory of Evolutionary BiologyDepartment of Philosophy and History of SciencesCharles UniversityPragueCzech Republic
| | - Jaroslav Flegr
- Faculty of ScienceLaboratory of Evolutionary BiologyDepartment of Philosophy and History of SciencesCharles UniversityPragueCzech Republic
| |
Collapse
|
8
|
Abstract
Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.
Collapse
|
9
|
Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0001. [PMID: 27619705 DOI: 10.1098/rstb.2016.0001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/25/2023] Open
Abstract
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
10
|
Dagg JL. How counterfactuals of Red-Queen theory shed light on science and its historiography. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2017; 64:53-64. [PMID: 28683340 DOI: 10.1016/j.shpsc.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
A historical episode of evolutionary theory, which has lead to the Red Queen theory of the evolutionary maintenance of sex, includes two striking contingencies. These are used to explore alternative what-if scenarios, in order to test some common opinions about such counterfactuals. This sheds new light on the nature of science and its historiography. One counterfactual leads to an unexpected convergence of its result to that of the actual science but, nevertheless, differs in its causal structure. The other diverges towards an incompatible alternative, but this requires further contingent choices that also diverge from actual science. The convergence in the first counterfactual is due to a horizontal transfer of knowledge. Similar transfers of knowledge are typical for innovations of actual science. This suggests that contingent choices can merge as well as fork research traditions both in actual research and counterfactual history. Neither the paths of the actual history of science nor those of its counterfactual alternatives will form a tree of exclusively diverging bifurcations, but a network instead. Convergencies in counterfactuals may, therefore, be due to the web-structure of science as much as to the aims of the historians in question. Furthermore, the difference in causal structure between the actual science and its convergent counterfactual might become diagnostic for external factors rather than internal aims forcing a historian towards convergence.
Collapse
|
11
|
Gorelick R, Carpinone J, Derraugh LJ. No universal differences between female and male eukaryotes: anisogamy and asymmetrical female meiosis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Root Gorelick
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
- School of Mathematics & Statistics and Institute of Interdisciplinary Studies; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | - Jessica Carpinone
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | | |
Collapse
|
12
|
Niklas KJ, Cobb ED, Kutschera U. Did meiosis evolve before sex and the evolution of eukaryotic life cycles? Bioessays 2014; 36:1091-101. [PMID: 25143284 DOI: 10.1002/bies.201400045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biologists have long theorized about the evolution of life cycles, meiosis, and sexual reproduction. We revisit these topics and propose that the fundamental difference between life cycles is where and when multicellularity is expressed. We develop a scenario to explain the evolutionary transition from the life cycle of a unicellular organism to one in which multicellularity is expressed in either the haploid or diploid phase, or both. We propose further that meiosis might have evolved as a mechanism to correct for spontaneous whole-genome duplication (auto-polyploidy) and thus before the evolution of sexual reproduction sensu stricto (i.e. the formation of a diploid zygote via the fusion of haploid gametes) in the major eukaryotic clades. In addition, we propose, as others have, that sexual reproduction, which predominates in all eukaryotic clades, has many different advantages among which is that it produces variability among offspring and thus reduces sibling competition.
Collapse
Affiliation(s)
- Karl J Niklas
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
13
|
López-Villavicencio M, Debets AJM, Slakhorst M, Giraud T, Schoustra SE. Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model. J Evol Biol 2013; 26:1968-78. [PMID: 23848947 DOI: 10.1111/jeb.12196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023]
Abstract
Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be sufficient to maintain sex in the short term are met in nature. Our study addresses a largely overlooked hypothesis, proposing that sex could be maintained in the short term by advantages due to functions linked with sex, but not related to recombination. These advantages would be so essential that sex could not be lost in the short term. Here, we used the fungus Aspergillus nidulans to experimentally test predictions of this hypothesis. Specifically, we were interested in (i) the short-term deleterious effects of recombination, (ii) possible nonrecombinatorial advantages of sex particularly through the elimination of mutations and (iii) the outcrossing rate under choice conditions in a haploid fungus able to reproduce by both outcrossing and haploid selfing. Our results were consistent with our hypotheses: we found that (i) recombination can be strongly deleterious in the short term, (ii) sexual reproduction between individuals derived from the same clonal lineage provided nonrecombinatorial advantages, likely through a selection arena mechanism, and (iii) under choice conditions, outcrossing occurs in a homothallic species, although at low rates.
Collapse
Affiliation(s)
- M López-Villavicencio
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | |
Collapse
|
14
|
Cocco J, Butnariu A, Bessa E, Pasini A. Sex produces as numerous and long-lived offspring as parthenogenesis in a new parthenogenetic insect. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sex is a costly form of reproduction compared with parthenogenesis, but sex persists because of the more resistant and competitive descendants that it produces. We obtained thelytokous offspring from unmated female Doru lineare (Eschscholtz, 1822) earwigs, a species of insect in which parthenogenesis has never before been reported, and found that their number and survival rate did not differ from offspring of mated females. Current hypotheses support advantages of sex or parthenogenesis, but never equilibrium between them like the one reported in this paper. We suggest that parthenogenesis is how females multiply their entire genome and renew themselves.
Collapse
Affiliation(s)
- J. Cocco
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, MT, Brazil
| | - A.R. Butnariu
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, MT, Brazil; Centro de Ciências Agrícolas, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - E. Bessa
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, MT, Brazil; Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia e Botânica, Universidade Estadual de São Paulo, São José do Rio Preto, SP, Brazil
| | - A. Pasini
- Centro de Ciências Agrícolas, Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
15
|
Horne SD, Abdallah BY, Stevens JB, Liu G, Ye KJ, Bremer SW, Heng HH. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology. Syst Biol Reprod Med 2013; 59:124-30. [DOI: 10.3109/19396368.2012.754969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Heng HHQ, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 2012; 112:217-53. [PMID: 21925306 DOI: 10.1016/b978-0-12-387688-1.00008-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recently introduced genome theory of cancer evolution provides a new framework for evolutionary studies on cancer. In particular, the established relationship between the large number of individual molecular mechanisms and the general evolutionary mechanism of cancer calls upon a change in our strategies that have been based on the characterization of common cancer gene mutations and their defined pathways. To further explain the significance of the genome theory of cancer evolution, a brief review will be presented describing the various attempts to illustrate the evolutionary mechanism of cancer, followed by further analysis of some key components of somatic cell evolution, including the diversity of biological systems, the multiple levels of information systems and control systems, the two phases (the punctuated or discontinuous phase and gradual Darwinian stepwise phase) and dynamic patterns of somatic cell evolution where genome replacement is the driving force. By linking various individual molecular mechanisms to the level of genome population diversity and tumorigenicity, the general mechanism of cancer has been identified as the evolutionary mechanism of cancer, which can be summarized by the following three steps including stress-induced genome instability, population diversity or heterogeneity, and genome-mediated macroevolution. Interestingly, the evolutionary mechanism is equal to the collective aggregate of all individual molecular mechanisms. This relationship explains why most of the known molecular mechanisms can contribute to cancer yet there is no single dominant mechanism for the majority of clinical cases. Despite the fact that each molecular mechanism can serve as a system stress and initiate the evolutionary process, to achieve cancer, multiple cycles of genome-mediated macroevolution are required and are a stochastically determined event. Finally, the potential clinical implications of the evolutionary mechanism of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, MI, USA
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Heng HHQ, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ. The evolutionary mechanism of cancer. J Cell Biochem 2010; 109:1072-84. [PMID: 20213744 DOI: 10.1002/jcb.22497] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identification of the general molecular mechanism of cancer is the Holy Grail of cancer research. Since cancer is believed to be caused by a sequential accumulation of cancer gene mutations, the identification, characterization, and targeting of common genetic alterations and their defined pathways have dominated the field for decades. Despite the impressive data accumulated from studies of gene mutations, epigenetic dysregulation, and pathway alterations, an overwhelming amount of diverse molecular information has offered limited understanding of the general mechanisms of cancer. To solve this paradox, the newly established genome theory is introduced here describing how somatic cells evolve within individual patients. The evolutionary mechanism of cancer is characterized using only three key components of somatic cell evolution that include increased system dynamics induced by stress, elevated genetic and epigenetic heterogeneity, and genome alteration mediated natural selection. Cancer progression represents a macro-evolutionary process where karyotype change or genome replacement plays the key dominant role. Furthermore, the recently identified relationship between the evolutionary mechanism and a large number of diverse individual molecular mechanisms is discussed. The total sum of all the individual molecular mechanisms is equal to the evolutionary mechanism of cancer. Individual molecular mechanisms including all the molecular mechanisms described to date are stochastically selected and unpredictable and are therefore clinically impractical. Recognizing the fundamental importance of the underlying basis of the evolutionary mechanism of cancer mandates the development of new strategies in cancer research.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201.
| | | | | | | | | | | |
Collapse
|