1
|
Kauai F, Bafort Q, Mortier F, Van Montagu M, Bonte D, Van de Peer Y. Interspecific transfer of genetic information through polyploid bridges. Proc Natl Acad Sci U S A 2024; 121:e2400018121. [PMID: 38748576 PMCID: PMC11126971 DOI: 10.1073/pnas.2400018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.
Collapse
Affiliation(s)
- Felipe Kauai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
2
|
Leal BSS, Brandão MM, Palma-Silva C, Pinheiro F. Differential gene expression reveals mechanisms related to habitat divergence between hybridizing orchids from the Neotropical coastal plains. BMC PLANT BIOLOGY 2020; 20:554. [PMID: 33302865 PMCID: PMC7731501 DOI: 10.1186/s12870-020-02757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Closely related hybridizing species are ideal systems for identifying genomic regions underlying adaptive divergence. Although gene expression plays a central role in determining ecologically-based phenotypic differences, few studies have inferred the role of gene expression for adaptive divergence in Neotropical systems. In this study, we conduct genome-wide expression analysis alongside soil elemental analysis in sympatric and allopatric populations of Epidendrum fulgens and E. puniceoluteum (Orchidaceae), which occur in contrasting adjacent habitats in the Neotropical coastal plains. RESULTS These species were highly differentiated by their gene expression profiles, as determined by 18-21% of transcripts. Gene ontology (GO) terms associated with reproductive processes were enriched according to comparisons between species in both allopatric and sympatric populations. Species showed differential expression in genes linked to salt and waterlogging tolerance according to comparisons between species in sympatry, and biological processes related to environmental stimulus appeared as representative among those transcripts associated with edaphic characteristics in each sympatric zone. Hybrids, in their turn, were well differentiated from E. fulgens, but exhibited a similar gene expression profile to flooding-tolerant E. puniceolutem. When compared with parental species, hybrids showed no transcripts with additive pattern of expression and increased expression for almost all transgressive transcripts. CONCLUSIONS This study sheds light on general mechanisms promoting ecological differentiation and assortative mating, and suggests candidate genes, such as those encoding catalase and calcium-dependent protein kinase, underling adaptation to harsh edaphic conditions in the Neotropical coastal plains. Moreover, it demonstrates that differential gene expression plays a central role in determining ecologically-based phenotypic differences among co-occurring species and their hybrids.
Collapse
Affiliation(s)
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Fabio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
3
|
Brandrud MK, Baar J, Lorenzo MT, Athanasiadis A, Bateman RM, Chase MW, Hedrén M, Paun O. Phylogenomic Relationships of Diploids and the Origins of Allotetraploids in Dactylorhiza (Orchidaceae). Syst Biol 2020; 69:91-109. [PMID: 31127939 PMCID: PMC6902629 DOI: 10.1093/sysbio/syz035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/04/2022] Open
Abstract
Disentangling phylogenetic relationships proves challenging for groups that have evolved recently, especially if there is ongoing reticulation. Although they are in most cases immediately isolated from diploid relatives, sets of sibling allopolyploids often hybridize with each other, thereby increasing the complexity of an already challenging situation. Dactylorhiza (Orchidaceae: Orchidinae) is a genus much affected by allopolyploid speciation and reticulate phylogenetic relationships. Here, we use genetic variation at tens of thousands of genomic positions to unravel the convoluted evolutionary history of Dactylorhiza. We first investigate circumscription and relationships of diploid species in the genus using coalescent and maximum likelihood methods, and then group 16 allotetraploids by maximum affiliation to their putative parental diploids, implementing a method based on genotype likelihoods. The direction of hybrid crosses is inferred for each allotetraploid using information from maternally inherited plastid RADseq loci. Starting from age estimates of parental taxa, the relative ages of these allotetraploid entities are inferred by quantifying their genetic similarity to the diploids and numbers of private alleles compared with sibling allotetraploids. Whereas northwestern Europe is dominated by young allotetraploids of postglacial origins, comparatively older allotetraploids are distributed further south, where climatic conditions remained relatively stable during the Pleistocene glaciations. Our bioinformatics approach should prove effective for the study of other naturally occurring, nonmodel, polyploid plant complexes.
Collapse
Affiliation(s)
- Marie K Brandrud
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Juliane Baar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Maria T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Alexander Athanasiadis
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
4
|
Nikishina TV, Kozlova ON, Levitskaya GE, Vysotskaya ON. Study of Dactylorhiza Seeds (D. baltica and D. maculata) from the Orchid Collection of the Cryobank at Timiryazev Institute of Plant Physiology, Russian Academy of Sciences. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019030063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Hedrén M, Olofsson SN, Paun O. Orchid colonization: multiple parallel dispersal events and mosaic genetic structure in Dactylorhiza majalis ssp. lapponica on the Baltic island of Gotland. ANNALS OF BOTANY 2018; 122:1019-1032. [PMID: 29955767 PMCID: PMC6266126 DOI: 10.1093/aob/mcy111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims The island of Gotland in the Baltic Sea has had no contact with surrounding continental areas since the withdrawal of the Weichselian ice sheet at approx. 17 ka BP. Plants present on Gotland must have arrived by long-distance dispersal, so populations are expected to exhibit reduced levels of genetic diversity compared with populations on surrounding mainlands. However, orchids have very small seeds, which appear well adapted to long-distance dispersal, and they should therefore be less affected than other plant species by colonization bottlenecks. The aim of this study was to analyse the genetic structure of orchids colonizing isolated islands, using the marsh orchid Dactylorhiza majalis ssp. lapponica as a case study. Methods More than 500 samples from 27 populations were analysed for 15 plastid and eight nuclear marker loci. Population diversity and differentiation patterns were compared for nuclear and plastid marker systems and analysed in relation to geographical location. Key Results We found high genetic diversity but no clear geographical structure of genetic differentiation between populations on Gotland. However, the between-population differentiation in plastid and nuclear markers were correlated and the greatest diversity was found at sites at comparatively high elevations, which were the first to emerge above the water after the Ice Age. Conclusions The regional population on Gotland has been established by a minimum of four dispersal events from continental regions. Subsequent gene flow between sites has not yet homogenized the differentiation pattern originating from initial colonization. We conclude that long-distance seed dispersal in orchids has a strong impact on structuring genetic diversity during periods of expansion and colonization, but contributes less to gene flow between populations once a stable population structure has been achieved.
Collapse
Affiliation(s)
- Mikael Hedrén
- Department of Biology, University of Lund, Lund, Sweden
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Naczk AM, Kolanowska M. Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae). PLoS One 2015; 10:e0143478. [PMID: 26599630 PMCID: PMC4657909 DOI: 10.1371/journal.pone.0143478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/05/2015] [Indexed: 12/01/2022] Open
Abstract
The intensively discussed taxonomic complexity of the Dactylorhiza genus is probably correlated with its migration history during glaciations and interglacial periods. Previous studies on past processes affecting the current distribution of Dactylorhiza species as well as the history of the polyploid complex formation were based only on molecular data. In the present study the ecological niche modeling (ENM) technique was applied in order to describe the distribution of potential refugia for the selected Dactylorhiza representatives during the Last Glacial Maximum. Additionally, future changes in their potential habitat coverage were measured with regard to three various climatic change scenarios. The maximum entropy method was used to create models of suitable niche distribution. A database of Dactylorhiza localities was prepared on the grounds of information collected from literature and data gathered during field works. Our research indicated that the habitats of majority of the studied taxa will decrease by 2080, except for D. incarnata var. incarnata, for which suitable habitats will increase almost two-fold in the global scale. Moreover, the potential habitats of some taxa are located outside their currently known geographical ranges, e.g. the Aleutian Islands, the western slopes of the Rocky Mountains, Newfoundland, southern Greenland and Iceland. ENM analysis did not confirm that the Balkans, central Europe or central Russia served as the most important refugia for individual representatives of the Dactylorhiza incarnata/maculata complex. Our study rather indicated that the Black Sea coast, southern Apennines and Corsica were the main areas characterized by habitats suitable for most of the taxa.
Collapse
Affiliation(s)
- Aleksandra M. Naczk
- Department of Molecular Evolution, University of Gdańsk, Wita Stwosza 59, PL 80–308, Gdańsk, Poland
| | - Marta Kolanowska
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, PL 80–308, Gdańsk, Poland
| |
Collapse
|
7
|
Semerikova SA, Semerikov VL. Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414010104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kolář F, Lučanová M, Vít P, Urfus T, Chrtek J, Fér T, Ehrendorfer F, Suda J. Diversity and endemism in deglaciated areas: ploidy, relative genome size and niche differentiation in the Galium pusillum complex (Rubiaceae) in Northern and Central Europe. ANNALS OF BOTANY 2013; 111:1095-1108. [PMID: 23589633 PMCID: PMC3662515 DOI: 10.1093/aob/mct074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/11/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Plants endemic to areas covered by ice sheets during the last glaciation represent paradigmatic examples of rapid speciation in changing environments, yet very few systems outside the harsh arctic zone have been comprehensively investigated so far. The Galium pusillum aggregate (Rubiaceae) is a challenging species complex that exhibits a marked differentiation in boreal parts of Northern Europe. As a first step towards understanding its evolutionary history in deglaciated regions, this study assesses cytological variation and ecological preferences of the northern endemics and compares the results with corresponding data for species occurring in neighbouring unglaciated parts of Central and Western Europe. METHODS DNA flow cytometry was used together with confirmatory chromosome counts to determine ploidy levels and relative genome sizes in 1158 individuals from 181 populations. A formalized analysis of habitat preferences was applied to explore niche differentiation among species and ploidy levels. KEY RESULTS The G. pusillum complex evolved at diploid and tetraploid levels in Northern Europe, in contrast to the high-polyploid evolution of most other northern endemics. A high level of eco-geographic segregation was observed between different species (particularly along gradients of soil pH and competition) which is unusual for plants in deglaciated areas and most probably contributes to maintaining species integrity. Relative monoploid DNA contents of the species from previously glaciated regions were significantly lower than those of their counterparts from mostly unglaciated Central Europe, suggesting independent evolutionary histories. CONCLUSIONS The aggregate of G. pusillum in Northern Europe represents an exceptional case with a geographically vicariant and ecologically distinct diploid/tetraploid species endemic to formerly glaciated areas. The high level of interspecific differentiation substantially widens our perception of the evolutionary dynamics and speciation rates in the dramatically changing environments of Northern Europe.
Collapse
Affiliation(s)
- Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice 1, CZ-252 43 Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice 1, CZ-252 43 Czech Republic
| | - Petr Vít
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice 1, CZ-252 43 Czech Republic
| | - Tomáš Urfus
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice 1, CZ-252 43 Czech Republic
| | - Jindřich Chrtek
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice 1, CZ-252 43 Czech Republic
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
| | - Friedrich Ehrendorfer
- Department of Systematic and Evolutionary Botany, Faculty Centre for Biodiversity, University of Vienna, Rennweg 14, Vienna, A-1030 Austria
| | - Jan Suda
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01 Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice 1, CZ-252 43 Czech Republic
| |
Collapse
|
9
|
Triponez Y, Arrigo N, Pellissier L, Schatz B, Alvarez N. Morphological, ecological and genetic aspects associated with endemism in the Fly Orchid group. Mol Ecol 2013; 22:1431-46. [DOI: 10.1111/mec.12169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Yann Triponez
- Department of Evolution, Ecology and Genetics; Research School of Biology; The Australian National University; Canberra ACT 0200 Australia
- Laboratory of Evolutionary Entomology; University of Neuchâtel; Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Nils Arrigo
- Department of Ecology and Evolutionary Biology; University of Arizona; Tucson AZ 85721 USA
- Department of Ecology and Evolution; Biophore Dorigny; University of Lausanne; CH-1015 Lausanne Switzerland
| | - Loïc Pellissier
- Department of Ecology and Evolution; Biophore Dorigny; University of Lausanne; CH-1015 Lausanne Switzerland
| | - Bertrand Schatz
- Centre d'Ecologie Fonctionnelle et Evolutive; CNRS Montpellier; UMR 5175; 1919 Route de Mende F-34293 Montpellier Cedex 5 France
| | - Nadir Alvarez
- Department of Ecology and Evolution; Biophore Dorigny; University of Lausanne; CH-1015 Lausanne Switzerland
| |
Collapse
|
10
|
Kyrkjeeide MO, Hassel K, Flatberg KI, Stenøien HK. The rare peat moss Sphagnum wulfianum (Sphagnaceae) did not survive the last glacial period in northern European refugia. AMERICAN JOURNAL OF BOTANY 2012; 99:677-689. [PMID: 22473975 DOI: 10.3732/ajb.1100410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Organisms may survive unfavorable conditions either by moving to more favorable areas by means of dispersal or by adapting to stressful environments. Pleistocene glacial periods represent extremely unfavorable conditions for the majority of life forms, especially sessile organisms. Many studies have revealed placements of refugial areas and postglacial colonization patterns of seed plants, but little is still known about areas of long-term survival and historical migration routes of bryophytes. Given overall differences in stress tolerance between seed plants and bryophytes, it is of interest to know whether bryophytes have survived periods of extreme climatic conditions better then seed plants in northern areas. METHODS The haploid and rarely spore-producing peat moss Sphagnum wulfianum is mostly found in areas that were covered by ice during the last glacial maximum. Twelve microsatellite markers were amplified from 43 populations (367 shoots) of this species, and data were analyzed using population genetic diversity statistics, Bayesian clustering methods, and coalescence-based inference tools to estimate historical and demographic parameters. KEY RESULTS Genetic diversity within populations was low, but populations were highly differentiated, with two main genetic clusters being recognized. CONCLUSION The two main genetic groups have diverged quite recently in the Holocene, and the pattern of genetic variability and structuring gives no support for survival in Scandinavian refugia during the last glacial period in this species. The dispersal ability of this plant thus seems surprisingly high despite its infrequent spore production.
Collapse
Affiliation(s)
- Magni Olsen Kyrkjeeide
- Systematics and Evolution Group, Section of Natural History, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
11
|
HEDRÉN MIKAEL, NORDSTRÖM SOFIE, BATEMAN RICHARDM. Plastid and nuclear DNA marker data support the recognition of four tetraploid marsh orchids (Dactylorhiza majalis s.l., Orchidaceae) in Britain and Ireland, but require their recircumscription. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01708.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ricca M, Szövényi P, Temsch EM, Johnson MG, Shaw AJ. Interploidal hybridization and mating patterns in the Sphagnum subsecundum complex. Mol Ecol 2011; 20:3202-18. [PMID: 21722226 DOI: 10.1111/j.1365-294x.2011.05170.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii.
Collapse
Affiliation(s)
- M Ricca
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|