1
|
Abstract
AbstractIn Odonates, female colour polymorphism is common and implies the presence of two or more female types with different colours and behaviours. To explain this phenomenon, several hypotheses have been proposed that consider morph frequency, population density, the presence of parasites, and mating behaviour. We studied the blue-tailed damselfly Ischnura elegans, a species with a blue androchrome morph and two gynochrome morphs (the common green infuscans, and the rare orange rufescens-obsoleta). The size of adult males and females, the presence of parasites, and pairing behaviour between males and the three female morphs was assessed in field conditions throughout the reproductive season in NW Italy. Moreover, growth and emergence success of larvae produced by the different morphs was analyzed in standardized conditions. In the field, males showed a preference for the gynochrome infuscans females, despite a similar frequency of androchrome females. In test conditions, male preference for the infuscans females was also observed. Paired males and paired androchrome females were larger than unpaired individuals, while there were no differences in size between paired and unpaired infuscans females. Males and androchrome females were more parasitized than infuscans females. The survival and emergence success of larvae produced by androchrome females was higher than those of offspring produced by the infuscans females. Our results suggest that a higher survival of progeny at the larval stage could counterbalance the higher parasitism and the lower pairing success of andromorph adult females and highlight the importance of considering the whole life-cycle in polymorphism studies.
Collapse
|
2
|
Carbonell JA, Wang YJ, Stoks R. Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion. J Anim Ecol 2021; 90:1666-1677. [PMID: 33724470 DOI: 10.1111/1365-2656.13482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Many species that are moving polewards encounter novel thermal regimes to which they have to adapt. Therefore, rapid evolution of thermal tolerance and of thermal plasticity in fitness-related traits in edge populations can be crucial for the success and speed of range expansions. We tested for adaptation in cold tolerance and in life history, behavioural and physiological traits and their thermal plasticity during a poleward range expansion. We reconstructed the thermal performance curves of life history (survival, growth and development rates), behaviour (food intake) and cold tolerance (chill coma recovery time) in the aquatic larval stage of the damselfly Ischnura elegans that is currently showing a poleward range expansion in northern Europe. We studied larvae from three edge and three core populations using a common-garden experiment. Consistent with the colder annual temperatures, larvae at the expansion front evolved an improved cold tolerance. The edge populations showed no overall (across temperatures) evolution of a faster life history that would improve their range-shifting ability. Moreover, consistent with damselfly edge populations from colder latitudes, edge populations evolved at the highest rearing temperature (28°C) a faster development rate, likely to better exploit the rare periods with higher temperatures. This was associated with a higher food intake and a lower metabolic rate. In conclusion, our results suggest that the edge populations rapidly evolved adaptive changes in trait means and thermal plasticity to the novel thermal conditions at the edge front. Our results highlight the importance of considering besides trait plasticity and the evolution of trait means, also the evolution of trait plasticity to improve forecasts of responses to climate change.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Ying-Jie Wang
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Swaegers J, Spanier KI, Stoks R. Genetic compensation rather than genetic assimilation drives the evolution of plasticity in response to mild warming across latitudes in a damselfly. Mol Ecol 2020; 29:4823-4834. [PMID: 33031581 DOI: 10.1111/mec.15676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Global warming is causing plastic and evolutionary changes in the phenotypes of ectotherms. Yet, we have limited knowledge on how the interplay between plasticity and evolution shapes thermal responses and underlying gene expression patterns. We assessed thermal reaction norm patterns across the transcriptome and identified associated molecular pathways in northern and southern populations of the damselfly Ischnura elegans. Larvae were reared in a common garden experiment at the mean summer water temperatures experienced at the northern (20°C) and southern (24°C) latitudes. This allowed a space-for-time substitution where the current gene expression levels at 24°C in southern larvae are a proxy for the expected responses of northern larvae under gradual thermal evolution to the predicted 4°C warming. Most differentially expressed genes showed fixed differences across temperatures between latitudes, suggesting that thermal genetic adaptation will mainly evolve through changes in constitutive gene expression. Northern populations also frequently showed plastic responses in gene expression to mild warming, while southern populations were much less responsive to temperature. Thermal responsive genes in northern populations showed to a large extent a pattern of genetic compensation, namely gene expression that was induced at 24°C in northern populations remained at a lower constant level in southern populations, and were associated with metabolic and translation pathways. There was instead little evidence for genetic assimilation of an initial plastic response to mild warming. Our data therefore suggest that genetic compensation rather than genetic assimilation may drive the evolution of plasticity in response to mild warming in this damselfly species.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Katina I Spanier
- Laboratory of Computational Biology, University of Leuven, Leuven, Belgium.,Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Verheyen J, Stoks R. Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate. CHEMOSPHERE 2020; 243:125369. [PMID: 31765902 DOI: 10.1016/j.chemosphere.2019.125369] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 05/12/2023]
Abstract
To make more realistic predictions about the current and future effects of pesticides, we need to better understand physiological mechanisms associated with the widespread higher toxicity of many pesticides under increasing mean temperatures and daily temperature fluctuations (DTFs). One overlooked, yet insightful, mechanism are bioenergetic responses as these provide information about the balance between energy gains and costs. Therefore, we studied how the bioenergetic responses to the insecticide chlorpyrifos were affected by a higher mean temperature and a higher DTF in Ischnura elegans damselfly larvae. To quantify bioenergetic responses we measured energy availability (Ea), energy consumption (Ec) and total net energy budget (cellular energy allocation, CEA). Exposure to chlorpyrifos considerably reduced CEA values when a high mean temperature was combined with a high DTF (up to -18%). Notably, chlorpyrifos had little effect on CEA at a constant 20 °C, meaning that the bioenergetic impact of chlorpyrifos would have been underestimated if we had only tested under standard testing conditions. The chlorpyrifos-induced reductions in CEA under warming were driven by reductions in Ea (up to -16%, mainly through large reductions in sugar and fat contents) while Ec was unaffected by chlorpyrifos. Treatment groups with a lower CEA value showed a higher mortality and a lower growth rate, indicating bioenergetic responses are contributing to the higher toxicity of chlorpyrifos under warming. Our study highlights the importance of evaluating the effects of pesticides under an increase in both mean temperature and DTF to improve the ecological risk assessment of pesticides under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
5
|
Goldberg JK, Lively CM, Sternlieb SR, Pintel G, Hare JD, Morrissey MB, Delph LF. Herbivore-mediated negative frequency-dependent selection underlies a trichome dimorphism in nature. Evol Lett 2020; 4:83-90. [PMID: 32055414 PMCID: PMC7006469 DOI: 10.1002/evl3.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Negative frequency-dependent selection (NFDS) has been shown to maintain polymorphism in a diverse array of traits. The action of NFDS has been confirmed through modeling, experimental approaches, and genetic analyses. In this study, we investigated NFDS in the wild using morph-frequency changes spanning a 20-year period from over 30 dimorphic populations of Datura wrightii. In these populations, plants either possess glandular (sticky) or non-glandular (velvety) trichomes, and the ratio of these morphs varies substantially among populations. Our method provided evidence that NFDS, rather than drift or migration, is the primary force maintaining this dimorphism. Most populations that were initially dimorphic remained dimorphic, and the overall mean and variance in morph frequency did not change over time. Furthermore, morph-frequency differences were not related to geographic distances. Together, these results indicate that neither directional selection, drift, or migration played a substantial role in determining morph frequencies. However, as predicted by negative frequency-dependent selection, we found that the rare morph tended to increase in frequency, leading to a negative relationship between the change in the frequency of the sticky morph and its initial frequency. In addition, we found that morph-frequency change over time was significantly correlated with the damage inflicted by two herbivores: Lema daturaphila and Tupiochoris notatus. The latter is a specialist on the sticky morph and damage by this herbivore was greatest when the sticky morph was common. The reverse was true for L. daturaphila, such that damage increased with the frequency of the velvety morph. These findings suggest that these herbivores contribute to balancing selection on the observed trichome dimorphism.
Collapse
Affiliation(s)
- Jay K. Goldberg
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
| | | | | | | | - J. Daniel Hare
- Department of EntomologyUniversity of CaliforniaRiversideCalifornia92521
| | | | - Lynda F. Delph
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
| |
Collapse
|
6
|
Svensson EI, Willink B, Duryea MC, Lancaster LT. Temperature drives pre‐reproductive selection and shapes the biogeography of a female polymorphism. Ecol Lett 2019; 23:149-159. [DOI: 10.1111/ele.13417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023]
|
7
|
Verheyen J, Stoks R. Shrinking Body Size and Physiology Contribute to Geographic Variation and the Higher Toxicity of Pesticides in a Warming World. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11515-11523. [PMID: 31498598 DOI: 10.1021/acs.est.9b03806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To improve current and future risk assessment of pesticides under global warming, mechanistic insights and consideration of daily temperature fluctuations (DTFs) are needed. One overlooked mechanism how both higher mean temperatures and DTFs may increase toxicity is by reducing body size (temperature-size-rule). We studied whether a higher mean temperature and DTF magnified chlorpyrifos toxicity in Ischnura elegans damselfly larvae, and whether this was mediated by temperature-induced reductions in body size and/or physiological changes. The lethal effects of chlorpyrifos were magnified at the high mean temperature (up to ∼15%) and under DTF (up to ∼33%), and especially at their combination (up to ∼46%) indicating synergisms. This highlights that not only considering DTFs, but also their interaction with higher mean temperatures is pivotal for realistic predictions of pesticide toxicity. Both higher temperatures and DTFs resulted in smaller larvae, which were more sensitive to chlorpyrifos. Notably, the DTF-induced smaller body sizes, as well as the higher oxidative damage to lipids, contributed to the higher chlorpyrifos toxicity under DTF. By integrating the temperature-size rule and size-pesticide sensitivity pattern we provide proof-of-principle for a novel, likely general mechanism contributing to geographic variation and the higher toxicity of pesticides in a warming world.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| |
Collapse
|
8
|
Abbott J, Rios‐Cardenas O, Morris MR. Insights from intralocus tactical conflict: adaptive states, interactions with ecology and population divergence. OIKOS 2019. [DOI: 10.1111/oik.06264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jessica Abbott
- Section for Evolutionary Ecology, Dept of Biology, Univ. Of Lund Sölvegatan 37 SE‐223 62 Lund Swede
| | | | | |
Collapse
|
9
|
Van Dievel M, Tüzün N, Stoks R. Latitude-associated evolution and drivers of thermal response curves in body stoichiometry. J Anim Ecol 2019; 88:1961-1972. [PMID: 31408526 DOI: 10.1111/1365-2656.13088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
Trait-based studies are needed to understand the plastic and genetic responses of organisms to warming. A neglected organismal trait is elemental composition, despite its potential to cascade into effects on the ecosystem level. Warming is predicted to shape elemental composition through shifts in storage molecules associated with responses in growth, body size and metabolic rate. Our goals were to quantify thermal response patterns in body composition and to obtain insights into their underlying drivers and their evolution across latitudes. We reconstructed the thermal response curves (TRCs) for body elemental composition [C (carbon), N (nitrogen) and the C:N ratio] of damselfly larvae from high- and low-latitude populations. Additionally, we quantified the TRCs for survival, growth and development rates and body size to assess local thermal adaptation, as well as the TRCs for metabolic rate and key macromolecules (proteins, fat, sugars and cuticular melanin and chitin) as these may underlie the elemental TRCs. All larvae died at 36°C. Up to 32°C, low-latitude larvae increased growth and development rates and did not suffer increased mortality. Instead, growth and development rates of high-latitude larvae were lower and levelled off at 24°C, and mortality increased at 32°C. This latitude-associated thermal adaptation pattern matched the 'hotter-is-better' hypothesis. With increasing temperatures, low-latitude larvae decreased C:N, while high-latitude larvae increased C:N. These patterns were driven by associated changes in N contents, while C contents did not respond to temperature. Consistent with the temperature-size rule and the thermal melanism hypothesis, body size and melanin levels decreased with warming. While all traits and associated macromolecules (except for metabolic rate that showed thermal compensation) assumed to underlie thermal responses in elemental composition showed thermal plasticity, these were largely independent and none could explain the stoichiometric TRCs. Our results highlight that thermal responses in elemental composition cannot be explained by traditionally assumed drivers, asking for a broader perspective including the thermal dependence of elemental fluxes. Another key implication is that thermal evolution can reverse the plastic stoichiometric thermal responses and hence reverse how warming may shape food web dynamics through changes in body composition at different latitudes.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Svensson EI, Connallon T. How frequency-dependent selection affects population fitness, maladaptation and evolutionary rescue. Evol Appl 2019; 12:1243-1258. [PMID: 31417612 PMCID: PMC6691226 DOI: 10.1111/eva.12714] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023] Open
Abstract
Frequency-dependent (FD) selection is a central process maintaining genetic variation and mediating evolution of population fitness. FD selection has attracted interest from researchers in a wide range of biological subdisciplines, including evolutionary genetics, behavioural ecology and, more recently, community ecology. However, the implications of frequency dependence for applied biological problems, particularly maladaptation, biological conservation and evolutionary rescue remain underexplored. The neglect of FD selection in conservation is particularly unfortunate. Classical theory, dating back to the 1940s, demonstrated that frequency dependence can either increase or decrease population fitness. These evolutionary consequences of FD selection are relevant to modern concerns about population persistence and the capacity of evolution to alleviate extinction risks. But exactly when should we expect FD selection to increase versus decrease absolute fitness and population growth? And how much of an impact is FD selection expected to have on population persistence versus extinction in changing environments? The answers to these questions have implications for evolutionary rescue under climate change and may inform strategies for managing threatened populations. Here, we revisit the core theory of FD selection, reviewing classical single-locus models of population genetic change and outlining short- and long-run consequences of FD selection for the evolution of population fitness. We then develop a quantitative genetic model of evolutionary rescue in a deteriorating environment, with population persistence hinging upon the evolution of a quantitative trait subject to both frequency-dependent and frequency-independent natural selection. We discuss the empirical literature pertinent to this theory, which supports key assumptions of our model. We show that FD selection can promote population persistence when it aligns with the direction of frequency-independent selection imposed by abiotic environmental conditions. However, under most scenarios of environmental change, FD selection limits a population's evolutionary responsiveness to changing conditions and narrows the rate of environmental change that is evolutionarily tolerable.
Collapse
Affiliation(s)
- Erik I. Svensson
- Evolutionary Ecology UnitDepartment of BiologyLund UniversityLundSweden
| | - Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
11
|
Verheyen J, Stoks R. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:209-218. [PMID: 30798022 DOI: 10.1016/j.envpol.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
There is increasing concern that climate change may make organisms more sensitive to chemical pollution. Many pesticides are indeed more toxic at higher mean temperatures. Yet, we know next to nothing about the effect of another key component of climate change, the increase of daily temperature fluctuations (DTFs), on pesticide toxicity. Therefore, we tested the effect of the pesticide chlorpyrifos under different levels of DTF (constant = 0 °C, low = 5 °C (current maximum level) and high = 10 °C (predicted maximum level under global warming)) around the same mean temperature on key life history and physiological traits of Ischnura elegans damselfly larvae in a common-garden experiment. At all levels of DTF, chlorpyrifos exposure was stressful: it reduced energy storage (fat content) and the activity of its target enzyme acetylcholinesterase, while it increased the activity of the detoxification enzyme cytochrome P450 monooxygenase. Notably, chlorpyrifos did not cause mortality or reduced growth rate at the constant temperature (0 °C DTF), yet increased mortality 6x and reduced growth rate with ca. 115% in the presence of DTF. This indicates that daily short-term exposures to higher temperatures can increase pesticide toxicity. Our data suggest that when 5 °C DTF will become more common in the studied high-latitude populations, this will increase the toxicity of CPF, and that a further increase from 5° DTF to 10 °C DTF may not result in a further increase of pesticide toxicity. Our results highlight the biological importance of including daily temperature fluctuations in ecological risk assessment of pesticides and as an extra dimension in the climate-induced toxicant sensitivity concept.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
12
|
Henze MJ, Lind O, Wilts BD, Kelber A. Pterin-pigmented nanospheres create the colours of the polymorphic damselfly Ischnura elegans. J R Soc Interface 2019; 16:20180785. [PMID: 30991898 PMCID: PMC6505549 DOI: 10.1098/rsif.2018.0785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/28/2019] [Indexed: 01/04/2023] Open
Abstract
Animal colours commonly act as signals for mates or predators. In many damselfly species, both sexes go through a developmental colour change as adults, and females often show colour polymorphism, which may have a function in mate choice, avoidance of mating harassment and camouflage. In the blue-tailed damselfly, Ischnura elegans, young males are bright green and turn blue as they reach maturity. Females are red ( rufescens) or violet ( violacea) as immatures and, when mature, either mimic the blue colour of the males ( androchrome), or acquire an inconspicuous olive-green ( infuscans) or olive-brown ( obsoleta). The genetic basis of these differences is still unknown. Here, we quantify the colour development of all morphs of I. elegans and investigate colour formation by combining anatomical data and reflectance spectra with optical finite-difference time-domain simulations. While the coloration primarily arises from a disordered assembly of nanospheres in the epidermis, morph-dependent changes result from adjustments in the composition of pterin pigments within the nanospheres, and from associated shifts in optical density. Other pigments fine-tune hue and brilliance by absorbing stray light. These mechanisms produce an impressive palette of colours and offer guidance for genetic studies on the evolution of colour polymorphism and visual communication.
Collapse
Affiliation(s)
- Miriam J. Henze
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Olle Lind
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
- Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
| | - Almut Kelber
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
13
|
Verheyen J, Delnat V, Stoks R. Increased Daily Temperature Fluctuations Overrule the Ability of Gradual Thermal Evolution to Offset the Increased Pesticide Toxicity under Global Warming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4600-4608. [PMID: 30921514 DOI: 10.1021/acs.est.8b07166] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The widespread evidence that global warming can increase species sensitivities to chemical toxicants, and vice versa, and the recent insight that thermal evolution may mitigate these effects is crucial to predict the future impact of toxicants in a warming world. Nevertheless, a major component of global warming, the predicted increase in daily temperature fluctuations (DTFs), has been ignored at the interface of evolutionary ecotoxicology and global change biology. We studied whether 4 °C warming and a 5 °C DTF increase (to 10 °C DTF) magnified the negative impact of the insecticide chlorpyrifos (CPF) in larvae of low- and high-latitude populations of the damselfly Ischnura elegans. While 4 °C warming only increased CPF-induced mortality in high-latitude larvae, the high (10 °C) DTF increased CPF-induced larval mortality at both latitudes. CPF reduced the heat tolerance; however, this was buffered by latitude-specific thermal adaptation to both mean temperature and DTF. Integrating our results in a space-for-time substitution indicated that gradual thermal evolution in high-latitude larvae may offset the negative effects of CPF on heat tolerance under warming, unless the expected DTF increase is taken into account. Our results highlight the crucial importance of jointly integrating DTFs and thermal evolution to improve risk assessment of toxicants under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| |
Collapse
|
14
|
Wood C, Fitt RNL, Lancaster LT. Evolving social dynamics prime thermal tolerance during a poleward range shift. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Connor Wood
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Robert N L Fitt
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
15
|
Bruinjé AC, Moura MO, Maggi BS, São-Pedro VA, Pessoa DM, Costa GC. Conspecifics of the Striped Lava Lizard are able to distinguish sex and male colour morphs in apparently homogeneous dull dorsal colouration. AMPHIBIA-REPTILIA 2019. [DOI: 10.1163/15685381-20181048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animal colouration plays a key role in inter and intraspecific interactions, pre-eminently in mate signalling. When multiple types of colouration occur within sexes it is possible that they show alternative reproductive strategies. In lizards, most colouration studies do not incorporate how colour is perceived by conspecifics. Here, we used unbiased colour analysis methods (spectrophotometry and visual modelling) to test for sexual dimorphism and within male dichromatism in the Striped Lava Lizard. We found that males express two distinct colourations that are different from females in several dorsal and ventral body regions. Our results showed UV reflection at the throat, an important body region for signalling. Ventral patches, the coloured badge seen in adult males of Tropidurus spp., have two distinct colour classes within males (Y and B males). Morphs are best discriminated by blue and yellow chroma, and brightness. Body size had little influence on colouration, suggesting that colour may be linked to inheritance rather than growth. Our study clearly shows sexual dichromatism and the existence of colour morphs in this species. Moreover, morph differences in colouration are perceptible by conspecifics. These differences are not only between ventral patches, but also in other body parts such as the dorsum, previously considered as cryptic by human observers. We suggest that colouration at the ventral patches and throat might play a role in intraspecific interactions. Patches increase colour intensity during breeding season and are likely to be costly by pigment-based expression, whereas throat’s UV reflection might have a cost infringed by conspicuousness.
Collapse
Affiliation(s)
- Andre C. Bruinjé
- 1Graduate Program in Ecology and Conservation Biology, Department of Zoology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- 2Laboratory of Biogeography, Macroecology and Evolutionary Biology, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Mauricio O. Moura
- 1Graduate Program in Ecology and Conservation Biology, Department of Zoology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Bruno S. Maggi
- 2Laboratory of Biogeography, Macroecology and Evolutionary Biology, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Vinicius A. São-Pedro
- 3Laboratory of Sensory Ecology, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- 4Centro de Ciências da Natureza, Universidade Federal de São Carlos, Campus Lagoa do Sino, Buri, São Paulo, Brazil
| | - Daniel M.A. Pessoa
- 3Laboratory of Sensory Ecology, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Gabriel C. Costa
- 5Department of Biology, Auburn University at Montgomery, Montgomery, AL 36124, USA
| |
Collapse
|
16
|
Debecker S, Stoks R. Pace of life syndrome under warming and pollution: integrating life history, behavior, and physiology across latitudes. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1332] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sara Debecker
- Evolutionary Stress Ecology and Ecotoxicology; KU Leuven (University of Leuven); Charles Deberiotstraat 32 3000 Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology; KU Leuven (University of Leuven); Charles Deberiotstraat 32 3000 Leuven Belgium
| |
Collapse
|
17
|
Dieker P, Beckmann L, Teckentrup J, Schielzeth H. Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity. Ecol Evol 2018; 8:7273-7284. [PMID: 30151148 PMCID: PMC6106198 DOI: 10.1002/ece3.4156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 11/05/2022] Open
Abstract
Discrete color polymorphisms represent a fascinating aspect of intraspecific diversity. Color morph ratios often vary clinally, but in some cases, there are no marked clines and mixes of different morphs occur at appreciable frequencies in most populations. This poses the questions of how polymorphisms are maintained. We here study the spatial and temporal distribution of a very conspicuous color polymorphism in the club-legged grasshopper Gomphocerus sibiricus. The species occurs in a green and a nongreen (predominately brown) morph, a green-brown polymorphism that is common among Orthopteran insects. We sampled color morph ratios at 42 sites across the alpine range of the species and related color morph ratios to local habitat parameters and climatic conditions. Green morphs occurred in both sexes, and their morph ratios were highly correlated among sites, suggesting shared control of the polymorphism in females and males. We found that in at least 40 of 42 sites green and brown morphs co-occurred with proportions of green ranging from 0% to 70% with significant spatial heterogeneity. The proportion of green individuals tended to increase with decreasing summer and winter precipitations. Nongreen individuals can be further distinguished into brown and pied individuals, and again, this polymorphism is shared with other grasshopper species. We found pied individuals at all sites with proportions ranging from 3% to 75%, with slight, but significant variation between years. Pied morphs show a clinal increase in frequency from east to west and decreased with altitude and lower temperatures and were more common on grazed sites. The results suggest that both small-scale and large-scale spatial heterogeneity affects color morph ratios. The almost universal co-occurrence of all three color morphs argues against strong effects of genetic drift. Instead, the data suggest that small-scale migration-selection balance and/or local balancing selection maintain populations polymorphic.
Collapse
Affiliation(s)
- Petra Dieker
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| | - Luisa Beckmann
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | - Julia Teckentrup
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | - Holger Schielzeth
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| |
Collapse
|
18
|
Pérez i de Lanuza G, Carretero MA. Partial divergence in microhabitat use suggests environmental-dependent selection on a colour polymorphic lizard. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2550-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Op de Beeck L, Verheyen J, Stoks R. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:226-234. [PMID: 29096295 DOI: 10.1016/j.envpol.2017.10.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 °C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of 'toxicant-induced climate change sensitivity'. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world.
Collapse
Affiliation(s)
- Lin Op de Beeck
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
20
|
Holmes IA, Grundler MR, Davis Rabosky AR. Predator Perspective Drives Geographic Variation in Frequency-Dependent Polymorphism. Am Nat 2017; 190:E78-E93. [PMID: 28937812 DOI: 10.1086/693159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Color polymorphism in natural populations can manifest as a striking patchwork of phenotypes in space, with neighboring populations characterized by dramatic differences in morph composition. These geographic mosaics can be challenging to explain in the absence of localized selection because they are unlikely to result from simple isolation-by-distance or clinal variation in selective regimes. To identify processes that can lead to the formation of geographic mosaics, we developed a simulation-based model to explore the influence of predator perspective, selection, migration, and genetic linkage of color loci on allele frequencies in polymorphic populations over space and time. Using simulated populations inspired by the biology of Heliconius longwing butterflies, Cepaea land snails, Oophaga poison frogs, and Sonora ground snakes, we found that the relative sizes of predator and prey home ranges can produce large differences in morph composition between neighboring populations under both positive and negative frequency-dependent selection. We also demonstrated the importance of the interaction of predator perspective with the type of frequency dependence and localized directional selection across migration and selection intensities. Our results show that regional-scale predation can promote the formation of phenotypic mosaics in prey species, without the need to invoke spatial variation in selective regimes. We suggest that predator behavior can play an important and underappreciated role in the formation and maintenance of geographic mosaics in polymorphic species.
Collapse
|
21
|
Takahashi Y. Genome-wide population genetic analysis identifies evolutionary forces establishing continuous population divergence. Ecol Res 2017. [DOI: 10.1007/s11284-017-1459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Male biased sex ratio reduces the fecundity of one of three female morphs in a polymorphic damselfly. Behav Ecol 2017. [DOI: 10.1093/beheco/arx086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Op de Beeck L, Verheyen J, Olsen K, Stoks R. Negative effects of pesticides under global warming can be counteracted by a higher degradation rate and thermal adaptation. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12919] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lin Op de Beeck
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 B-3000 Leuven Belgium
| | - Julie Verheyen
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 B-3000 Leuven Belgium
| | - Kent Olsen
- Natural History Museum Aarhus; Wilhelm Meyers Allé 210 DK-8000 Aarhus C Denmark
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 B-3000 Leuven Belgium
| |
Collapse
|
24
|
Op de Beeck L, Verheyen J, Stoks R. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:714-721. [PMID: 28040340 DOI: 10.1016/j.envpol.2016.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans. To also assess the role of latitude-specific thermal adaptation in shaping the impact of warming and pesticide exposure on thermal tolerance, we exposed larvae from replicated high- and low-latitude populations to the pesticide in a common garden rearing experiment at 20 and 24 °C, the mean summer water temperatures at high and low latitudes. As expected, exposure to chlorpyrifos resulted in a lower CTmax. Yet, this pesticide effect on CTmax was lower at 24 °C compared to 20 °C because of a lower accumulation of chlorpyrifos in the medium at 24 °C. The effects on CTmax could partly be explained by reduction of the aerobic scope. Given that these effects did not differ between latitudes, gradual thermal evolution is not expected to counteract the negative effect of the pesticide on thermal tolerance. By for the first time integrating both interaction pathways we were not only able to provide support for both of them, but more importantly demonstrate that they can directly affect each other. Indeed, the warming-induced reduction in pesticide impact generated a lower pesticide-induced climate change sensitivity (in terms of decreased upper thermal tolerance). Our results indicate that, assuming no increase in pesticide input, global warming might reduce the negative effect of multiple pulse exposures to pesticides on sensitivity to elevated temperatures.
Collapse
Affiliation(s)
- Lin Op de Beeck
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
25
|
Fitt RNL, Lancaster LT. Range shifting species reduce phylogenetic diversity in high latitude communities via competition. J Anim Ecol 2017; 86:543-555. [PMID: 28217836 DOI: 10.1111/1365-2656.12655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/19/2017] [Indexed: 11/28/2022]
Abstract
Under anthropogenic climate change, many species are expanding their ranges to higher latitudes and altitudes, resulting in novel species interactions. The consequences of these range shifts for native species, patterns of local biodiversity and community structure in high latitude ecosystems are largely unknown but critical to understand in light of widespread poleward expansions by many warm-adapted generalists. Using niche modelling, phylogenetic methods, and field and laboratory studies, we investigated how colonization of Scotland by a range expanding damselfly, Ischnura elegans, influences patterns of competition and niche shifts in native damselfly species, and changes in phylogenetic community structure. Colonization by I. elegans was associated with reduced population density and niche shifts in the resident species least related to I. elegans (Lestes sponsa), reflecting enhanced competition. Furthermore, communities colonized by I. elegans exhibited phylogenetic underdispersion, reflecting patterns of relatedness and competition. Our results provide a novel example of a potentially general mechanism whereby climate change-mediated range shifts can reduce phylogenetic diversity within high latitude communities, if colonizing species are typically competitively superior to members of native communities that are least-closely related to the colonizer.
Collapse
Affiliation(s)
- Robert N L Fitt
- Institute of Biological and Environmental Sciences, The University of Aberdeen, Zoology Building Tillydrone Ave, Aberdeen, AB24 2TZ, UK
| | - Lesley T Lancaster
- Institute of Biological and Environmental Sciences, The University of Aberdeen, Zoology Building Tillydrone Ave, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
26
|
Debecker S, Dinh KV, Stoks R. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2409-2417. [PMID: 28146353 DOI: 10.1021/acs.est.6b04989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.
Collapse
Affiliation(s)
- Sara Debecker
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven/University of Leuven , Charles Deberiotstraat 32 bus 2439, 3000 Leuven, Belgium
| | - Khuong V Dinh
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven/University of Leuven , Charles Deberiotstraat 32 bus 2439, 3000 Leuven, Belgium
- National Institute of Aquatic Resources, Technical University of Denmark , Jægersborg Alle 1D, Charlottenlund 2920, Denmark
- Department of Freshwater Aquaculture, Institute of Aquaculture, Nha Trang University , No 2 Nguyen Dinh Chieu, Nha Trang, 650000, Vietnam
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven/University of Leuven , Charles Deberiotstraat 32 bus 2439, 3000 Leuven, Belgium
| |
Collapse
|
27
|
Svensson EI. Back to basics: using colour polymorphisms to study evolutionary processes. Mol Ecol 2017; 26:2204-2211. [DOI: 10.1111/mec.14025] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Erik I. Svensson
- Evolutionary Ecology Unit; Department of Biology; Lund University; SE-223 62 Lund Sweden
| |
Collapse
|
28
|
Lancaster LT, Dudaniec RY, Hansson B, Svensson EI. Do group dynamics affect colour morph clines during a range shift? J Evol Biol 2017; 30:728-737. [DOI: 10.1111/jeb.13037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/23/2016] [Indexed: 01/18/2023]
Affiliation(s)
- L. T. Lancaster
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - R. Y. Dudaniec
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - B. Hansson
- Department of Biology; Lund University; Lund Sweden
| | | |
Collapse
|
29
|
Willink B, Svensson EI. Intra- and intersexual differences in parasite resistance and female fitness tolerance in a polymorphic insect. Proc Biol Sci 2017; 284:20162407. [PMID: 28123090 PMCID: PMC5310041 DOI: 10.1098/rspb.2016.2407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/20/2016] [Indexed: 11/12/2022] Open
Abstract
To understand host-parasite interactions, it is necessary to quantify variation and covariation in defence traits. We quantified parasite resistance and fitness tolerance of a polymorphic damselfly (Ischnura elegans), an insect with three discrete female colour morphs but with monomorphic males. We quantified sex and morph differences in parasite resistance (prevalence and intensity of water mite infections) and morph-specific fitness tolerance in the females in natural populations for over a decade. There was no evidence for higher parasite susceptibility in males as a cost of sexual selection, whereas differences in defence mechanisms between female morphs are consistent with correlational selection operating on combinations of parasite resistance and tolerance. We suggest that tolerance differences between female morphs interact with frequency-dependent sexual conflict, which maintains the polymorphism locally. Host-parasite interactions can therefore shape intra- and intersexual phenotypic divergence and interfere with sexual selection and sexual conflict.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, Lund 223-62, Sweden
| | - Erik I Svensson
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, Lund 223-62, Sweden
| |
Collapse
|
30
|
Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev Camb Philos Soc 2016; 92:1877-1909. [DOI: 10.1111/brv.12313] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel Pironon
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - Guillaume Papuga
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
- Dipartimento di Scienze della Natura e del Territorio; Università degli Studi di Sassari; Box 21 Piazza Universitá 07100 Sassari Italy
| | - Jesús Villellas
- Department of Biology; Duke University; Box 90338 Durham NC 27708-0338 U.S.A
| | - Amy L. Angert
- Departments of Botany and Zoology; University of British Columbia; Box 4200-6270 University Boulevard, Vancouver V6T 1Z4 Canada
| | - María B. García
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - John D. Thompson
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
| |
Collapse
|
31
|
Tran TT, Janssens L, Dinh KV, Op de Beeck L, Stoks R. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes. Evol Appl 2016; 9:818-30. [PMID: 27330557 PMCID: PMC4908467 DOI: 10.1111/eva.12390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/25/2016] [Indexed: 01/16/2023] Open
Abstract
How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.
Collapse
Affiliation(s)
- Tam T Tran
- Institute of AquacultureNha Trang UniversityNha TrangVietnam; Laboratory of Aquatic Ecology, Evolution and ConservationUniversity of LeuvenLeuvenBelgium
| | - Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation University of Leuven Leuven Belgium
| | - Khuong V Dinh
- Institute of AquacultureNha Trang UniversityNha TrangVietnam; National Institute of Aquatic ResourcesTechnical University of DenmarkCopenhagenDenmark
| | - Lin Op de Beeck
- Laboratory of Aquatic Ecology, Evolution and Conservation University of Leuven Leuven Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation University of Leuven Leuven Belgium
| |
Collapse
|
32
|
Leighton GRM, Hugo PS, Roulin A, Amar A. Just Google it: assessing the use of Google Images to describe geographical variation in visible traits of organisms. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12562] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriella R. M. Leighton
- Department of Biological Sciences University of Cape Town Private Bag X3, Rondebosch, 7701, Cape Town South Africa
| | - Pierre S. Hugo
- Department of Computer Science University of Cape Town Private Bag X3, Rondebosch, 7701, Cape Town South Africa
| | - Alexandre Roulin
- Department of Ecology and Evolution University of Lausanne, UNIL Sorge Le Biophore, CH ‐ 1015 Lausanne Switzerland
| | - Arjun Amar
- Percy FitzPatrick Institute of African Ornithology University of Cape Town Private Bag X3, Rondebosch, 7701, Cape Town South Africa
| |
Collapse
|
33
|
Arambourou H, Stoks R. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:38-45. [PMID: 26261878 DOI: 10.1016/j.aquatox.2015.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected.
Collapse
Affiliation(s)
- Hélène Arambourou
- Laboratory of Ecotoxicology, IRSTEA Lyon-Villeurbanne, MAEP Research Unit, CS70077, 5 rue de la Doua, F-69626 Villeurbanne, France; Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Debériotstraat 32, BE-3000 Leuven, Belgium.
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Debériotstraat 32, BE-3000 Leuven, Belgium
| |
Collapse
|
34
|
McLean CA, Stuart-Fox D, Moussalli A. Environment, but not genetic divergence, influences geographic variation in colour morph frequencies in a lizard. BMC Evol Biol 2015; 15:156. [PMID: 26253642 PMCID: PMC4528382 DOI: 10.1186/s12862-015-0442-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022] Open
Abstract
Background Identifying the causes of intraspecific phenotypic variation is essential for understanding evolutionary processes that maintain diversity and promote speciation. In polymorphic species, the relative frequencies of discrete morphs often vary geographically; yet the drivers of spatial variation in morph frequencies are seldom known. Here, we test the relative importance of gene flow and natural selection to identify the causes of geographic variation in colour morph frequencies in the Australian tawny dragon lizard, Ctenophorus decresii. Results Populations of C. decresii are polymorphic for male throat coloration and all populations surveyed shared the same four morphs but differed in the relative frequencies of morphs. Despite genetic structure among populations, there was no relationship between genetic similarity or geographic proximity and similarity in morph frequencies. However, we detected remarkably strong associations between morph frequencies and two environmental variables (mean annual aridity index and vegetation cover), which together explained approximately 45 % of the total variance in morph frequencies. Conclusions Spatial variation in selection appears to play an important role in shaping morph frequency patterns in C. decresii. Selection associated with differences in local environmental conditions, combined with relatively low levels of gene flow, is expected to favour population divergence in morph composition, but may be counteracted by negative frequency-dependent selection favouring rare morphs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0442-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire A McLean
- School of BioSciences, The University of Melbourne, Parkville, VIC, 2010, Australia. .,Sciences Department, Museum Victoria, Carlton Gardens, Melbourne, VIC, 3053, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 2010, Australia.
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, Carlton Gardens, Melbourne, VIC, 3053, Australia.
| |
Collapse
|
35
|
Le Rouzic A, Hansen TF, Gosden TP, Svensson EI. Evolutionary Time-Series Analysis Reveals the Signature of Frequency-Dependent Selection on a Female Mating Polymorphism. Am Nat 2015; 185:E182-96. [DOI: 10.1086/680982] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Bolton PE, Rollins LA, Griffith SC. The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species. Mol Ecol 2015; 24:2907-15. [PMID: 25870951 DOI: 10.1111/mec.13201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/01/2023]
Abstract
Polymorphic species have been the focus of important work in evolutionary biology. It has been suggested that colour polymorphic species have specific evolutionary and population dynamics that enable them to persist through environmental changes better than less variable species. We suggest that recent empirical and theoretical work indicates that polymorphic species may be more vulnerable to extinction than previously thought. This vulnerability arises because these species often have a number of correlated sexual, behavioural, life history and ecological traits, which can have a simple genetic underpinning. When exacerbated by environmental change, these alternate strategies can lead to conflict between morphs at the genomic and population levels, which can directly or indirectly affect population and evolutionary dynamics. In this perspective, we identify a number of ways in which the nature of the correlated traits, their underpinning genetic architecture, and the inevitable interactions between colour morphs can result in a reduction in population fitness. The principles illustrated here apply to all kinds of discrete polymorphism (e.g. behavioural syndromes), but we focus primarily on colour polymorphism because they are well studied. We urge further empirical investigation of the genetic architecture and interactions in polymorphic species to elucidate the impact on population fitness.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lee A Rollins
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic., 3217, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
37
|
|
38
|
Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies. Nat Commun 2014; 5:4468. [DOI: 10.1038/ncomms5468] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/19/2014] [Indexed: 11/09/2022] Open
|
39
|
Dinh Van K, Janssens L, Debecker S, Stoks R. Warming increases chlorpyrifos effects on predator but not anti-predator behaviours. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:215-221. [PMID: 24792152 DOI: 10.1016/j.aquatox.2014.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Recent insights indicate that negative effects of pesticides on aquatic biota occur at concentrations that current legislation considers environmentally protective. We here address two, potentially interacting, mechanisms that may contribute to the underestimation of the impact of sublethal pesticide effects in single species tests at room temperature: the impairment of predator and antipredator behaviours and the stronger impact of organophosphate pesticides at higher temperatures. To address these issues we assessed the effects of chlorpyrifos on the predator and antipredator behaviours of larvae of the damselfly Ischnura elegans, important intermediate predators in aquatic food webs, in a common-garden warming experiment with replicated low- and high-latitude populations along the latitudinal gradient of this species in Europe. Chlorpyrifos reduced the levels of predator behavioural endpoints, and this reduction was stronger at the higher temperature for head orientations and feeding strikes. Chlorpyrifos also impaired two key antipredator behavioural endpoints, activity reductions in response to predator cues were smaller in the presence of chlorpyrifos, and chlorpyrifos caused a lower escape swimming speed; these effects were independent of temperature. This suggests chlorpyrifos may impact food web interactions by changing predator-prey interactions both with higher (predators) and lower trophic levels (food). Given that only the interaction with the lower trophic level was more impaired at higher temperatures, the overall pesticide-induced changes in food web dynamics may be strongly temperature-dependent. These findings were consistent in damselflies from low- and high-latitude populations, illustrating that thermal adaptation will not mitigate the increased toxicity of pesticides at higher temperatures. Our study not only underscores the relevance of including temperature and prey-predator interactions in ecological risk assessment but also their potential interplay and thereby highlights the complexity of contaminant effects on predator-prey interactions being differentially temperature-dependent pending on the trophic level.
Collapse
Affiliation(s)
- Khuong Dinh Van
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraaat 32, B-3000 Leuven, Belgium; Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu, Nha Trang, Vietnam.
| | - Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraaat 32, B-3000 Leuven, Belgium.
| | - Sara Debecker
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraaat 32, B-3000 Leuven, Belgium.
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraaat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
40
|
Dinh Van K, Janssens L, Debecker S, Stoks R. Temperature- and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12269] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khuong Dinh Van
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 Leuven Belgium
- Institute of Aquaculture; Nha Trang University; No 2 Nguyen Dinh Chieu street Nha Trang Vietnam
| | - Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 Leuven Belgium
| | - Sara Debecker
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 Leuven Belgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Charles Deberiotstraat 32 Leuven Belgium
| |
Collapse
|
41
|
Green KK, Svensson EI, Bergsten J, Härdling R, Hansson B. The interplay between local ecology, divergent selection, and genetic drift in population divergence of a sexually antagonistic female trait. Evolution 2014; 68:1934-46. [PMID: 24635214 DOI: 10.1111/evo.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/03/2014] [Indexed: 12/21/2022]
Abstract
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden; Current Address: Department of Biosciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
42
|
Janssens L, Dinh Van K, Stoks R. Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:74-82. [PMID: 24463491 DOI: 10.1016/j.aquatox.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 01/05/2014] [Indexed: 05/20/2023]
Abstract
Global warming and pesticide pollution are major threats for aquatic biodiversity. Yet, how pesticide effects are influenced by the increased frequency of extreme temperatures under global warming and how local thermal adaptation may mitigate these effects is unknown. We therefore investigated the combined impact of larval chlorpyrifos exposure, larval food stress and adult heat exposure on a set of fitness-related traits in replicated low- and high-latitude populations of the damselfly Ischnura elegans. Larval pesticide exposure resulted in lighter adults with a higher water content, lower fat content, higher Hsp70 levels and a lower immune function (PO activity). Heat exposure reduced water content, mass, fat content and flying ability. Importantly, both stressors interacted across metamorphosis: adult heat exposure lowered the reduction of fat content, and generated a stronger decrease in PO activity in pesticide-exposed animals. Larval pesticide exposure and larval food stress also reduced the defense response to the adult heat stress in terms of increased Hsp70 levels. In line with strong life history differences in the unstressed control situation, high-latitude animals were less sensitive to food stress (body mass and water content), but more sensitive to pesticide stress (development time and PO activity) and heat exposure (PO activity and Hsp70 levels). While low-latitude adults could better withstand the extreme temperature as suggested by the weaker increase in Hsp70, heat exposure similarly affected the delayed effects of larval pesticide exposure at both latitudes. Our study highlighted two key findings relevant for ecological risk assessment under global warming. Firstly, the delayed effects of larval pesticide exposure on adult damselflies depended upon subsequent adult heat exposure, indicating that larval pesticide stress and adult heat stress interacted across metamorphosis. Secondly, low- and high-latitude animals responded differently to the imposed stressors, highlighting that intraspecific evolution along natural thermal gradients may shape sensitivity to pesticides.
Collapse
Affiliation(s)
- Lizanne Janssens
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Khuong Dinh Van
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
43
|
Zheng XL, Yang QS, Hu YW, Lei CL, Wang XP. Latitudinal variation of morphological characteristics in the swallowtailSericinus montelusGray, 1798 (Lepidoptera: Papilionidae). ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xia-Lin Zheng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory; College of Plant Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
- College of Agriculture; Guangxi University; Nanning 530004 China
| | - Qiu-Sheng Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory; College of Plant Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Yu-Wei Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory; College of Plant Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory; College of Plant Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory; College of Plant Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| |
Collapse
|
44
|
McLean CA, Stuart-Fox D. Geographic variation in animal colour polymorphisms and its role in speciation. Biol Rev Camb Philos Soc 2014; 89:860-73. [PMID: 24528520 DOI: 10.1111/brv.12083] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/30/2013] [Accepted: 01/12/2014] [Indexed: 11/29/2022]
Abstract
Polymorphic species, in which multiple variants coexist within a population, are often used as model systems in evolutionary biology. Recent research has been dominated by the hypothesis that polymorphism can be a precursor to speciation. To date, the majority of research regarding polymorphism and speciation has focused on whether polymorphism is maintained within a population or whether morphs within populations may diverge to form separate species (sympatric speciation); however, the geographical context of speciation in polymorphic systems is likely to be both diverse and complex. In this review, we draw attention to the geographic variation in morph composition and frequencies that characterises many, if not most polymorphic species. Recent theoretical and empirical developments suggest that such variation in the number, type and frequency of morphs present among populations can increase the probability of speciation. Thus, the geographical context of a polymorphism requires a greater research focus. Here, we review the prevalence, causes and evolutionary consequences of geographic variation in polymorphism in colour-polymorphic animal species. The prevalence and nature of geographic variation in polymorphism suggests that polymorphism may be a precursor to and facilitate speciation more commonly than appreciated previously. We argue that a better understanding of the processes generating geographic variation in polymorphism is vital to understanding how polymorphism can promote speciation.
Collapse
Affiliation(s)
- Claire A McLean
- Department of Zoology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Sciences Department, Museum Victoria, Carlton Gardens, Victoria, 3053, Australia
| | | |
Collapse
|
45
|
Dinh Van K, Janssens L, Debecker S, De Jonge M, Lambret P, Nilsson-Örtman V, Bervoets L, Stoks R. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. GLOBAL CHANGE BIOLOGY 2013; 19:2625-2633. [PMID: 23640735 DOI: 10.1111/gcb.12243] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/09/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients.
Collapse
|
46
|
Cox CL, Davis Rabosky AR. Spatial and Temporal Drivers of Phenotypic Diversity in Polymorphic Snakes. Am Nat 2013; 182:E40-57. [DOI: 10.1086/670988] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
|
48
|
Ajuria Ibarra H, Reader T. Reasons to be different: do conspicuous polymorphisms in invertebrates persist because rare forms are fitter? J Zool (1987) 2013. [DOI: 10.1111/jzo.12034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - T. Reader
- School of Biology; University of Nottingham; Nottingham UK
| |
Collapse
|
49
|
De Block M, Pauwels K, Van Den Broeck M, De Meester L, Stoks R. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions. GLOBAL CHANGE BIOLOGY 2013; 19:689-696. [PMID: 23504827 DOI: 10.1111/gcb.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/12/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.
Collapse
Affiliation(s)
- Marjan De Block
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Debériotstraat 32, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
50
|
Shell polymorphism in the land-snail Cepaea nemoralis (L.) along a West-East transect in continental Europe. FOLIA MALACOLOGICA 2012. [DOI: 10.2478/v10125-012-0015-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|