1
|
Benhamdoun A, Achtak H, Dahbi A. Bioaccumulation of trace metals in edible terrestrial snails, Theba pisana and Otala spp., in a dumpsite area in Morocco and assessment of human health risks for consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42810-42826. [PMID: 38878242 DOI: 10.1007/s11356-024-33945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
This study assessed the bioaccumulation patterns of five trace metals (Cd, Cr, Co, Cu, and Zn) in two edible snail species, Theba pisana and Otala spp., collected from a dumpsite in Safi City, Morocco. The results indicated that bioaccumulation might be species-specific, as metal concentration profiles varied between the two snail species. Additionally, higher metal levels in the dumpsite snails confirmed their potential as bioindicators of trace metal pollution in terrestrial environments. However, the distribution of trace elements within the edible parts of the snails showed marked unevenness, with the viscera accumulating more metals than the foot. The study also evaluated the potential human health risks associated with consuming these snails. Trace metal levels in the edible parts exceeded most international safety thresholds. The estimated daily intakes (EDIs) of trace metals through snail consumption were below the provisional tolerable daily intakes (PTDIs) for both children and adults, suggesting that daily consumption is generally safe. Nonetheless, the hazard index (HI) indicated that children might face health risks from long-term consumption of contaminated snails (HI > 1), while adults are less likely to experience such complications (HI < 1). The total target carcinogenic risk (TTCR) was below 1E-04 for both children and adults, indicating negligible to acceptable carcinogenic risks for all consumer groups.
Collapse
Affiliation(s)
- Abdellali Benhamdoun
- Research Team "Environment & Health", Department of Biology, Cadi Ayyad University, Polydisciplinary FacultyB.P. 4162, 46000, Sidi Bouzid, Safi, Morocco.
| | - Hafid Achtak
- Research Team "Environment & Health", Department of Biology, Cadi Ayyad University, Polydisciplinary FacultyB.P. 4162, 46000, Sidi Bouzid, Safi, Morocco
| | - Abdallah Dahbi
- Research Team "Environment & Health", Department of Biology, Cadi Ayyad University, Polydisciplinary FacultyB.P. 4162, 46000, Sidi Bouzid, Safi, Morocco
| |
Collapse
|
2
|
Liew TS, Phung CC, Mat Said MA, Hoo PK. Distribution and abundance of the land snail Pollicaria elephas (Gastropoda: Pupinidae) in limestone habitats in Perak, Malaysia. PeerJ 2021; 9:e11886. [PMID: 34395099 PMCID: PMC8325424 DOI: 10.7717/peerj.11886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to reveal the habitat variables that determine the distribution and abundance of the land snail Pollicaria elephas in limestone habitats in Perak, Malaysia. Seventeen plots were selected on a limestone hill to determine the effect of environmental variables on the abundance of this land snail. The environmental variables we considered included habitat (canopy cover and leaf litter thickness), topography (elevation, aspect, ruggedness, and slope), microclimate (soil temperature, air temperature, and humidity), and vegetation (abundance of respective vascular plant species). The correlation analyses suggested that the snails’ abundance was positively correlated with the abundance of the four vascular plant species: Diospyros toposia var. toposoides, Croton cascarilloides, Kibatalia laurifolia, and Mallotus peltatus. Plots with lower soil temperatures had more snails than plots with higher soil temperatures. Our results show that plots in the southern part of the limestone hill, in which P. elephas were absent, were similar in habitat, topography, microclimate, and vegetation to the plots in the northern part of the limestone hill, where specimens were mostly present. The absence of this species in suitable habitats may be due to their low dispersal ability rather than adverse environmental conditions.
Collapse
Affiliation(s)
- Thor-Seng Liew
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Chee-Chean Phung
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Pui Kiat Hoo
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Multiple Introductions of the Pestiferous Land Snail Theba pisana (Müller, 1774) (Gastropoda: Helicidae) in Southern California. INSECTS 2021; 12:insects12080662. [PMID: 34442227 PMCID: PMC8396441 DOI: 10.3390/insects12080662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In Southern California, USA, the introduced white Italian land snail, Theba pisana, is prolific and locally pestiferous. To better understand its diversity and infer its parent population(s), we collected it from Los Angeles and San Diego counties and generated and analyzed gene sequence data (CO1, 16S, ITS2) that we compared between localities and to T. pisana CO1 barcodes from around the world. We also compared the morphology of the jaw, radula, and reproductive systems in T. pisana from Los Angeles and San Diego Counties. We found that T. pisana living at several sites in Los Angeles County in 2019–2020 had a single origin and were most similar in CO1 DNA sequence, based on available data, to specimens from Malta. Theba pisana collected from one site in San Diego County differed from Los Angeles T. pisana and were most similar in CO1 barcode sequence to specimens from Morocco. Jaw and mucous gland morphology also differed between Los Angeles and San Diego populations, but it is unclear if these traits are unique to lineages of T. pisana or if they change during a snail’s lifetime. We discuss how Los Angeles and San Diego T. pisana lineages may have arrived in Southern California and anticipate that the genetic data and morphological observations generated by this study will inform future studies of T. pisana where it is native and introduced. Abstract The terrestrial land snail Theba pisana is circum-Mediterranean in native range and widely introduced and pestiferous in regions around the world. In California, USA, T. pisana has been recorded intermittently since 1914, but its source population(s) are unknown, and no morphological or molecular analyses within or between California populations have been published. Therefore, we compared molecular data (CO1, 16S, ITS2) and internal morphology (jaw, radula, reproductive system) in T. pisana collected from Los Angeles and San Diego counties in 2019–2020. DNA barcode (CO1 mtDNA) analysis revealed that T. pisana from Los Angeles County was most similar to T. pisana from the Mediterranean island of Malta, and northern San Diego County-collected specimens were most similar to T. pisana from Morocco. Morphology of the jaw and mucous glands also differed between Los Angeles and San Diego populations, but it is unclear if traits are lineage-specific or artifacts of ontogeny. Several pathways of introduction into Southern California are possible for this species, but evidence for intentional vs. accidental introduction of present populations is lacking. Subsequent investigation(s) could use the data generated herein to assess the provenance of T. pisana elsewhere in California and/or worldwide and inform analyses of reproductive biology and systematics in this widespread species.
Collapse
|
4
|
Köhler H, Capowiez Y, Mazzia C, Eckstein H, Kaczmarek N, Bilton MC, Burmester JKY, Capowiez L, Chueca LJ, Favilli L, Florit Gomila J, Manganelli G, Mazzuca S, Moreno‐Rueda G, Peschke K, Piro A, Quintana Cardona J, Sawallich L, Staikou AE, Thomassen HA, Triebskorn R. Experimental simulation of environmental warming selects against pigmented morphs of land snails. Ecol Evol 2021; 11:1111-1130. [PMID: 33598118 PMCID: PMC7863387 DOI: 10.1002/ece3.7002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
In terrestrial snails, thermal selection acts on shell coloration. However, the biological relevance of small differences in the intensity of shell pigmentation and the associated thermodynamic, physiological, and evolutionary consequences for snail diversity within the course of environmental warming are still insufficiently understood. To relate temperature-driven internal heating, protein and membrane integrity impairment, escape behavior, place of residence selection, water loss, and mortality, we used experimentally warmed open-top chambers and field observations with a total of >11,000 naturally or experimentally colored individuals of the highly polymorphic species Theba pisana (O.F. MÜller, 1774). We show that solar radiation in their natural Mediterranean habitat in Southern France poses intensifying thermal stress on increasingly pigmented snails that cannot be compensated for by behavioral responses. Individuals of all morphs acted neither jointly nor actively competed in climbing behavior, but acted similarly regardless of neighbor pigmentation intensity. Consequently, dark morphs progressively suffered from high internal temperatures, oxidative stress, and a breakdown of the chaperone system. Concomitant with increasing water loss, mortality increased with more intense pigmentation under simulated global warming conditions. In parallel with an increase in mean ambient temperature of 1.34°C over the past 30 years, the mortality rate of pigmented individuals in the field is, currently, about 50% higher than that of white morphs. A further increase of 1.12°C, as experimentally simulated in our study, would elevate this rate by another 26%. For 34 T. pisana populations from locations that are up to 2.7°C warmer than our experimental site, we show that both the frequency of pigmented morphs and overall pigmentation intensity decrease with an increase in average summer temperatures. We therefore predict a continuing strong decline in the frequency of pigmented morphs and a decrease in overall pigmentation intensity with ongoing global change in areas with strong solar radiation.
Collapse
Affiliation(s)
- Heinz‐R. Köhler
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | | | - Christophe Mazzia
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE) UMR 7263AMU, CNRSUniversité d´AvignonAvignon Cedex 9France
| | - Helene Eckstein
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Nils Kaczmarek
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Mark C. Bilton
- Namibian University of Science and TechnologyWindhoekNamibia
| | - Janne K. Y. Burmester
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | | | - Luis J. Chueca
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Department of Zoology and Animal Cell BiologyFaculty of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Leonardo Favilli
- Dipartimento di Scienze Fisiche, della Terra e dell'AmbienteSezione di Scienze AmbientaliUniversità degli Studi di SienaSienaItaly
| | | | - Giuseppe Manganelli
- Dipartimento di Scienze Fisiche, della Terra e dell'AmbienteSezione di Scienze AmbientaliUniversità degli Studi di SienaSienaItaly
| | - Silvia Mazzuca
- Lab of Plant Biology and Plant ProteomicsDepartment of Chemistry and Chemical TechnologiesUniversity of CalabriaRendeItaly
| | | | - Katharina Peschke
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Amalia Piro
- Lab of Plant Biology and Plant ProteomicsDepartment of Chemistry and Chemical TechnologiesUniversity of CalabriaRendeItaly
| | - Josep Quintana Cardona
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaEdifici ICTA‐ICP, campus de la UABBarcelonaSpain
- Ciutadella de MenorcaIlles BalearsSpain
| | - Lilith Sawallich
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Alexandra E. Staikou
- Department of ZoologySchool of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Henri A. Thomassen
- Comparative ZoologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Rita Triebskorn
- Animal Physiological EcologyInstitute for Evolution and EcologyUniversity of TübingenTübingenGermany
- Steinbeis‐Transfer Centre for Ecotoxicology and EcophysiologyRottenburgGermany
| |
Collapse
|
5
|
Reed EMX, Serr ME, Maurer AS, Burford Reiskind MO. Gridlock and beltways: the genetic context of urban invasions. Oecologia 2020; 192:615-628. [PMID: 32056021 DOI: 10.1007/s00442-020-04614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/30/2020] [Indexed: 01/16/2023]
Abstract
The rapid expansion of urban land across the globe presents new and numerous opportunities for invasive species to spread and flourish. Ecologists historically rejected urban ecosystems as important environments for ecology and evolution research but are beginning to recognize the importance of these systems in shaping the biology of invasion. Urbanization can aid the introduction, establishment, and spread of invaders, and these processes have substantial consequences on native species and ecosystems. Therefore, it is valuable to understand how urban areas influence populations at all stages in the invasion process. Population genetic tools are essential to explore the driving forces of invasive species dispersal, connectivity, and adaptation within cities. In this review, we synthesize current research about the influence of urban landscapes on invasion genetics dynamics. We conclude that urban areas are not only points of entry for many invasive species, they also facilitate population establishment, are pools for genetic diversity, and provide corridors for further spread both within and out of cities. We recommend the continued use of genetic studies to inform invasive species management and to understand the underlying ecological and evolutionary processes governing successful invasion.
Collapse
Affiliation(s)
- E M X Reed
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - M E Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - A S Maurer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - M O Burford Reiskind
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
6
|
Hoxha T, Crookes S, MacIsaac I, Chang X, Johansson M, Dick JT, Nicolai A, MacIsaac HJ. Comparative feeding behaviour of native and introduced terrestrial snails tracks their ecological impacts. NEOBIOTA 2019. [DOI: 10.3897/neobiota.47.35000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A developing body of theory and empirical evidence suggest that feeding behaviour as measured by the functional response (FR) can assist researchers in assessing the relative potential, ecological impacts and competitive abilities of native and introduced species. Here, we explored the FRs of two land snails that occur in south-western Ontario, one native (Mesodonthyroidus) and one non-indigenous (Cepaeanemoralis) to Canada. The non-indigenous species appears to have low ecological impact and inferior competitive abilities. Consistent with theory, while both species conformed to Type II functional responses, the native species had a significantly higher attack rate (5.30 vs 0.41, respectively) and slightly lower handling time (0.020 vs 0.023), and hence a higher maximum feeding rate (50.0 vs 43.5). The non-indigenous species exhibited a significantly longer time to contact for a variety of food types, and appeared less discriminating of paper that was offered as a non-food type. The non-indigenous species also ate significantly less food when in mixed species trials with the native snail. These feeding patterns match the known low ecological impact of the introduced snail and are consistent with the view that it is an inferior competitor relative to the native species. However, field experimentation is required to clarify whether the largely microallopatric distributions of the two species in south-western Ontario reflect competitive dominance by the native species or other factors such as habitat preference, feeding preferences or predator avoidance. The relative patterns of feeding behaviour and ecological impact are, however, fully in line with recent functional response theory and application.
Collapse
|
7
|
Vorobeichik EL, Ermakov AI, Grebennikov ME. Initial Stages of Recovery of Soil Macrofauna Communities after Reduction of Emissions from a Copper Smelter. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413619020115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ożgo M, Cameron RAD, Horsák M, Pokryszko B, Chudaś M, Cichy A, Kaczmarek S, Kobak J, Marzec M, Mierzwa-Szymkowiak D, Parzonko D, Pyka G, Rosin Z, Skawina A, Soroka M, Sulikowska-Drozd A, Surowiec T, Szymanek M, Templin J, Urbańska M, Zając K, Zielska J, Żbikowska E, Żołądek J. Cepaea nemoralis (Gastropoda: Pulmonata) in Poland: patterns of variation in a range-expanding species. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Małgorzata Ożgo
- Department of Evolutionary Biology, Kazimierz Wielki University, Ossolinskich, Bydgoszcz, Poland
| | - Robert A D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Zoology, Natural History Museum, London, UK
| | - Michal Horsák
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czechia
| | - Beata Pokryszko
- Museum of Natural History, Wrocław University, Sienkiewicza, Wrocław, Poland
| | - Małgorzata Chudaś
- Department of Evolutionary Biology, Kazimierz Wielki University, Ossolinskich, Bydgoszcz, Poland
| | - Anna Cichy
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Sławomir Kaczmarek
- Department of Evolutionary Biology, Kazimierz Wielki University, Ossolinskich, Bydgoszcz, Poland
| | - Jarosław Kobak
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | | | - Dariusz Parzonko
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zuzanna Rosin
- Department of Cell Biology, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska, Poznań, Poland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Aleksandra Skawina
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa, Warszawa, Poland
| | - Marianna Soroka
- Department of Genetics, Faculty of Biology, University of Szczecin, Wąska, Szczecin, Poland
| | - Anna Sulikowska-Drozd
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha, Łódź, Poland
| | - Tomasz Surowiec
- Department of Evolutionary Biology, Kazimierz Wielki University, Ossolinskich, Bydgoszcz, Poland
| | - Marcin Szymanek
- University of Warsaw, Faculty of Geology, Żwirki i Wigury, Warszawa, Poland
| | - Julita Templin
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Maria Urbańska
- Department of Zoology, Faculty of Veterinary and Animal Science, Poznań University of Life Sciences, Wojska Polskiego, Poznań, Poland
| | - Kamila Zając
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Joanna Zielska
- Department of Hydrobiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Elżbieta Żbikowska
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Żołądek
- Department of Evolutionary Biology, Kazimierz Wielki University, Ossolinskich, Bydgoszcz, Poland
| |
Collapse
|
9
|
Bergey EA. Dispersal of a non-native land snail across a residential area is modified by yard management and movement barriers. Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0815-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
11
|
Alberti M, Marzluff J, Hunt VM. Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0029. [PMID: 27920374 DOI: 10.1098/rstb.2016.0029] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/24/2023] Open
Abstract
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation-variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity-has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| | - John Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Victoria M Hunt
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Korábek O, Petrusek A, Juřičková L. Glacial refugia and postglacial spread of an iconic large European land snail, Helix pomatia (Pulmonata: Helicidae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Kramarenko SS. Patterns of spatio-temporal variation in land snails: a multi-scale approach. FOLIA MALACOLOGICA 2016. [DOI: 10.12657/folmal.024.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Cameron RAD, Cox RJ, Von Proschwitz T, Horsák M. Cepaea nemoralis (L.) in Göteborg, S.W. Sweden: variation in a recent urban invader. FOLIA MALACOLOGICA 2014. [DOI: 10.12657/folmal.022.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
|
16
|
Schilthuizen M, Kellermann V. Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes. Evol Appl 2013; 7:56-67. [PMID: 24454548 PMCID: PMC3894898 DOI: 10.1111/eva.12116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/27/2013] [Indexed: 01/15/2023] Open
Abstract
To forecast the responses of species to future climate change, an understanding of the ability of species to adapt to long-term shifts in temperature is crucial. We present a review on evolutionary adaptation and phenotypic plasticity of temperature-related traits in terrestrial invertebrates. The evidence for adaptive evolution in melanization is good, but we caution that genetic determination needs to be tested in each individual species, and complex genetic correlations may exist. For phenological traits allochronic data sets provide powerful means to track climate-induced changes; however, rarely are responses deconstructed into evolutionary and plastic responses. Laboratory studies suggest climate change responses in these traits will be driven by both. For stress resistance, the evidence for shifts in traits is poor. Studies leaning heavily on Drosophila have demonstrated potential limits to evolutionary responses in desiccation and heat resistance. Quantifying the capacity for these species to respond plastically and extending this work to other taxa will be an important next step. We also note that, although not strictly speaking a species trait, the response of endosymbionts to heat stress requires further study. Finally, while clearly genetic, and possibly adaptive, the anonymous nature of latitudinal shifts in clines of genetic markers in Drosophila prevents further interpretation.
Collapse
Affiliation(s)
- Menno Schilthuizen
- Naturalis Biodiversity Center Leiden, The Netherlands ; Centre for Ecological and Evolutionary Studies, Rijksuniversiteit Groningen Groningen, The Netherlands ; Institute Biology Leiden, Leiden University Leiden, The Netherlands
| | - Vanessa Kellermann
- School of Biological Sciences, Monash University Clayton, Vic., Australia
| |
Collapse
|
17
|
Schilthuizen M. Rapid, habitat-related evolution of land snail colour morphs on reclaimed land. Heredity (Edinb) 2013; 110:247-52. [PMID: 23149460 PMCID: PMC3669759 DOI: 10.1038/hdy.2012.74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/20/2012] [Accepted: 09/10/2012] [Indexed: 11/09/2022] Open
Abstract
I made use of the known dates of reclamation (and of afforestations) in the IJsselmeerpolders in The Netherlands to assess evolutionary adaptation in Cepaea nemoralis. At 12 localities (three in each polder), I sampled a total of 4390 adult individuals in paired open and shaded habitats, on average 233 m apart, and scored these for genetic shell colour polymorphisms. The results show (highly) significant differentiation at most localities, although the genes involved differed per locality. Overall, though, populations in shaded habitats had evolved towards darker shells than those in adjacent open habitats, whereas a 'Cain & Sheppard' diagram (proportion yellow shells plotted against 'effectively unbanded' shells) failed to reveal a clear pattern. This might suggest that thermal selection is more important than visual selection in generating this pattern. Trait differentiation, regardless of whether they were plotted against polder age or habitat age, showed a linear increase of differentiation with time, corresponding to a mean rate of trait evolution of 15-31 kilodarwin. In conclusion, C. nemoralis is capable of rapid and considerable evolutionary differentiation over 1-25 snail generations, though equilibrium may be reached only at longer time scales.
Collapse
Affiliation(s)
- M Schilthuizen
- Research Department, Naturalis Biodiversity Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Affiliation(s)
- Laurence M. Cook
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
19
|
Correlated phenotypic responses to habitat difference in Cepaea nemoralis (L.). FOLIA MALACOLOGICA 2012. [DOI: 10.2478/v10125-012-0020-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Cameron RAD, Cook LM, Greenwood JJD. Change and stability in a steep morph-frequency cline in the snailCepaea nemoralis(L.) over 43 years. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02033.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Robert A. D. Cameron
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 4TN UK
- Department of Zoology; The Natural History Museum; London SW7 5BD UK
| | - Laurence M. Cook
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Jeremy J. D. Greenwood
- Centre for Research into Ecological and Environmental Modelling; University of St Andrews; St Andrews KY16 9LZ UK
| |
Collapse
|
21
|
Shell polymorphism in the land-snail Cepaea nemoralis (L.) along a West-East transect in continental Europe. FOLIA MALACOLOGICA 2012. [DOI: 10.2478/v10125-012-0015-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|