1
|
Yu H, Lin Z, Xiao F. Role of body size and shape in animal camouflage. Ecol Evol 2024; 14:e11434. [PMID: 38746542 PMCID: PMC11090776 DOI: 10.1002/ece3.11434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 01/06/2025] Open
Abstract
Animal camouflage serves a dual purpose in that it enhances both predation efficiency and anti-predation strategies, such as background matching, disruptive coloration, countershading, and masquerade, for predators and prey, respectively. Although body size and shape determine the appearance of animals, potentially affecting their camouflage effectiveness, research over the past two centuries has primarily focused on animal coloration. Over the past two decades, attention has gradually shifted to the impact of body size and shape on camouflage. In this review, we discuss the impact of animal body size and shape on camouflage and identify research issues and challenges. A negative correlation between background matching effectiveness and an animal's body size has been reported, whereas flatter body shapes enhance background matching. The effectiveness of disruptive coloration is also negatively correlated with body size, whereas irregular body shapes physically disrupt the body outline, reducing the visibility of true edges and making it challenging for predators to identify prey. Countershading is most likely in larger mammals with smaller individuals, whereas body size is unrelated to countershading in small-bodied taxa. Body shape influences a body reflectance, affecting the form of countershading coloration exhibited by animals. Animals employing masquerade achieve camouflage by resembling inanimate objects in their habitats in terms of body size and shape. Empirical and theoretical research has found that body size affects camouflage strategies by determining key aspects of an animal's appearance and predation risk and that body shape plays a role in the form and effectiveness of camouflage coloration. However, the mechanisms underlying these adaptations remain elusive, and a relative dearth of research on other camouflage strategies. We underscore the necessity for additional research to investigate the interplay between animal morphology and camouflage strategies and their coevolutionary development, and we recommend directions for future research.
Collapse
Affiliation(s)
- Hongmin Yu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Zhixue Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Fanrong Xiao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| |
Collapse
|
2
|
De novo assembly and functional annotation of the heart + hemolymph transcriptome in the Caribbean spiny lobster Panulirus argus. Mar Genomics 2020; 54:100783. [PMID: 32414680 DOI: 10.1016/j.margen.2020.100783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022]
Abstract
The spiny lobster, Panulirus argus, is an ecologically relevant species in shallow water coral reefs and a target of the most lucrative fishery in the greater Caribbean region. This study reports, for the first time, the heart + hemolymph transcriptome of the Caribbean spiny lobster Panulirus argus assembled from short Illumina 150bp PE raw reads. A total of 80,152,094 raw reads were assembled using the Oyster River Protocol pipeline. The assembly resulted in a total of 254,773 transcripts. Functional gene annotation was conducted using the software package 'dammit'. Lastly, gene enrichment analyses were conducted using the Gene Ontology (GO) and KEGG pathway (Kaas) databases. This resource will be of utmost importance in future research aiming at exploring the effect of local and regional anthropogenic disturbances, as well as global climate change on the molecular physiology of this overexploited species.
Collapse
|
3
|
Nokelainen O, Maynes R, Mynott S, Price N, Stevens M. Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs. Funct Ecol 2019; 33:654-669. [PMID: 31217655 PMCID: PMC6559319 DOI: 10.1111/1365-2435.13280] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022]
Abstract
Animals from many taxa, from snakes and crabs to caterpillars and lobsters, change appearance with age, but the reasons why this occurs are rarely tested.We show the importance that ontogenetic changes in coloration have on the camouflage of the green shore crabs (Carcinus maenas), known for their remarkable phenotypic variation and plasticity in colour and pattern.In controlled conditions, we reared juvenile crabs of two shades, pale or dark, on two background types simulating different habitats for 10 weeks.In contrast to expectations for reversible colour change, crabs did not tune their background match to specific microhabitats, but instead, and regardless of treatment, all developed a uniform dark green phenotype. This parallels changes in shore crab appearance with age observed in the field.Next, we undertook a citizen science experiment at the Natural History Museum London, where human subjects ("predators") searched for crabs representing natural colour variation from different habitats, simulating predator vision.In concert, crabs were not hardest to find against their original habitat, but instead, the dark green phenotype was hardest to detect against all backgrounds.The evolution of camouflage can be better understood by acknowledging that the optimal phenotype to hide from predators may change over the life history of many animals, including the utilization of a generalist camouflage strategy. A plain language summary is available for this article.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Centre for Ecology and Conservation, College of Life and Environmental ScienceUniversity of ExeterPenrynUK
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Ruth Maynes
- Centre for Ecology and Conservation, College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Sara Mynott
- Centre for Ecology and Conservation, College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Natasha Price
- Centre for Ecology and Conservation, College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental ScienceUniversity of ExeterPenrynUK
| |
Collapse
|
4
|
Baeza JA. The complete mitochondrial genome of the Caribbean spiny lobster Panulirus argus. Sci Rep 2018; 8:17690. [PMID: 30523272 PMCID: PMC6283867 DOI: 10.1038/s41598-018-36132-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Panulirus argus is a keystone species and target of the most lucrative fishery in the Caribbean region. This study reports, for the first time, the complete mitochondrial genome of Panulirus argus (average coverage depth nucleotide-1 = 70×) assembled from short Illumina 150 bp PE reads. The AT-rich mitochondrial genome of Panulirus argus was 15 739 bp in length and comprised 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. A single 801 bp long intergenic space was assumed to be the D-loop. Most of the PCGs were encoded on the H-strand. The gene order observed in the mitochondrial genome of Panulirus argus corresponds to the presumed Pancrustacean ground pattern. KA/KS ratios calculated for all mitochondrial PCGs showed values < 1, indicating that all these PCGs are evolving under purifying selection. A maximum likelihood phylogenetic analysis (concatenated PCGs [n = 13], 154 arthropods) supported the monophyly of the Achelata and other infraorders within the Decapoda. Mitochondrial PCGs have enough phylogenetic informativeness to explore high-level genealogical relationships in the Pancrustacea. The complete mitochondrial genome of the Caribbean spiny lobster Panulirus argus will contribute to the better understanding of meta-population connectivity in this keystone overexploited species.
Collapse
Affiliation(s)
- J Antonio Baeza
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC, 29634, USA.
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA.
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
5
|
Martínez-Calderón R, Lozano-Álvarez E, Briones-Fourzán P. Morphometric relationships and seasonal variation in size, weight, and a condition index of post-settlement stages of the Caribbean spiny lobster. PeerJ 2018; 6:e5297. [PMID: 30065884 PMCID: PMC6063251 DOI: 10.7717/peerj.5297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
Spiny lobsters have a protracted pelagic, oceanic larval phase. The final larval stage metamorphoses into a non-feeding postlarva (puerulus) that actively swims towards the coast to settle in shallow habitats and does not resume feeding until after the molt into the first-stage juvenile. Therefore, the body dimensions and nutritional condition of both settled pueruli and first juveniles are likely to vary over time, potentially playing a crucial role in the recruitment to the benthic population. We compared carapace length (CL), height (CH), and width (CW); total length (TL), and body weight (W) between pueruli and first juveniles of the Caribbean spiny lobster, Panulirus argus, as well as morphometric relationships between both developmental stages. Except for CL, all other dimensions were larger in first juveniles, but more markedly CH and W. The slopes of the CH vs CL, CW vs CL, and W vs CL regressions differed significantly between stages, and all log-transformed relationships showed isometry in both stages, except for the CH vs CL relationship, which showed positive allometry. These results reflect a morphological change from the flatter, more streamlined body of the puerulus, to the heavier, more cylindrical body of the juvenile. We also analyzed seasonal variations in CL, W, the W/CL index (a morphometric condition index), and a modified W/CL index (i.e. after controlling for a significant effect of CL) of both stages using individuals monthly collected over 12 consecutive seasons (Autumn 2010–Summer 2013). In both stages, all three variables exhibited significant seasonal variation. For pueruli, the modified W/CL index differed from average in only two seasons, winter 2011 (higher) and summer 2013 (lower), but showed great within-season variation (larger coefficients of variation, CV), potentially reflecting variability in nutritional condition of larvae prior to metamorphosis and in the distances swum by individual pueruli to the settlement habitats. For first juveniles, the modified W/CL index was higher than average in winter and spring 2011, and lower in autumn 2011 and winter 2012, but showed less within season variation (smaller CVs), suggesting a combination of carry-over effects of puerulus condition and effects of local conditions (e.g., food availability and predation risk). These findings warrant further investigation into factors potentially decoupling settlement from recruitment processes.
Collapse
Affiliation(s)
- Rogelio Martínez-Calderón
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico.,Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Enrique Lozano-Álvarez
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | - Patricia Briones-Fourzán
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
6
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|
7
|
Nokelainen O, Hubbard N, Lown AE, Wood LE, Stevens M. Through predators’ eyes: phenotype–environment associations in shore crab coloration at different spatial scales. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
Duarte RC, Flores AAV, Stevens M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160342. [PMID: 28533459 PMCID: PMC5444063 DOI: 10.1098/rstb.2016.0342] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2016] [Indexed: 12/05/2022] Open
Abstract
Animals from a wide range of taxonomic groups are capable of colour change, of which camouflage is one of the main functions. A considerable amount of past work on this subject has investigated species capable of extremely rapid colour change (in seconds). However, relatively slow colour change (over hours, days, weeks and months), as well as changes arising via developmental plasticity are probably more common than rapid changes, yet less studied. We discuss three key areas of colour change and camouflage. First, we review the mechanisms underpinning colour change and developmental plasticity for camouflage, including cellular processes, visual feedback, hormonal control and dietary factors. Second, we discuss the adaptive value of colour change for camouflage, including the use of different camouflage types. Third, we discuss the evolutionary-ecological implications of colour change for concealment, including what it can tell us about intraspecific colour diversity, morph-specific strategies, and matching to different environments and microhabitats. Throughout, we discuss key unresolved questions and present directions for future work, and highlight how colour change facilitates camouflage among habitats and arises when animals are faced with environmental changes occurring over a range of spatial and temporal scales.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Rafael C Duarte
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
- Programa de Pós-Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Augusto A V Flores
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
9
|
Baeza JA, Simpson L, Ambrosio LJ, Mora N, Guéron R, Childress MJ. Active parental care, reproductive performance, and a novel egg predator affecting reproductive investment in the Caribbean spiny lobster Panulirus argus. BMC ZOOL 2016. [DOI: 10.1186/s40850-016-0006-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Affiliation(s)
- Csilla Ari
- Hyperbaric Biomedical Research Laboratory; Department of Molecular Pharmacology and Physiology; University of South Florida; Tampa FL 33613 USA
- Foundation for the Oceans of the Future; 1108 Budapest Hungary
| |
Collapse
|
11
|
Baeza JA. Molecular phylogeny of broken-back shrimps (genus Lysmata and allies): a test of the 'Tomlinson-Ghiselin' hypothesis explaining the evolution of hermaphroditism. Mol Phylogenet Evol 2013; 69:46-62. [PMID: 23727055 DOI: 10.1016/j.ympev.2013.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 11/19/2022]
Abstract
The 'Tomlinson-Ghiselin' hypothesis (TGh) predicts that outcrossing simultaneous hermaphroditism (SH) is advantageous when population density is low because the probability of finding sexual partners is negligible. In shrimps from the family Lysmatidae, Bauer's historical contingency hypothesis (HCh) suggests that SH evolved in an ancestral tropical species that adopted a symbiotic lifestyle with, e.g., sea anemones and became a specialized fish-cleaner. Restricted mobility of shrimps due to their association with a host, and hence, reduced probability of encountering mating partners, would have favored SH. The HCh is a special case of the TGh. Herein, I examined within a phylogenetic framework whether the TGh/HCh explains the origin of SH in shrimps. A phylogeny of caridean broken-back shrimps in the families Lysmatidae, Barbouriidae, Merguiidae was first developed using nuclear and mitochondrial makers. Complete evidence phylogenetic analyses using maximum likelihood (ML) and Bayesian inference (BI) demonstrated that Lysmatidae+Barbouriidae are monophyletic. In turn, Merguiidae is sister to the Lysmatidae+Barbouriidae. ML and BI ancestral character-state reconstruction in the resulting phylogenetic trees indicated that the ancestral Lysmatidae was either gregarious or lived in small groups and was not symbiotic. Four different evolutionary transitions from a free-living to a symbiotic lifestyle occurred in shrimps. Therefore, the evolution of SH in shrimps cannot be explained by the TGh/HCh; reduced probability of encountering mating partners in an ancestral species due to its association with a sessile host did not favor SH in the Lysmatidae. It is proposed that two conditions acting together in the past; low male mating opportunities and brooding constraints, might have favored SH in the ancestral Lysmatidae+Barbouridae. Additional studies on the life history and phylogenetics of broken-back shrimps are needed to understand the evolution of SH in the ecologically diverse Caridea.
Collapse
Affiliation(s)
- J Antonio Baeza
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL 34949, USA.
| |
Collapse
|