1
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
2
|
Zamora-Barrios CA, Nandini S, Sarma SSS. Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:267-276. [PMID: 30897466 DOI: 10.1016/j.envpol.2019.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Cyanotoxins from toxic blooms in lakes or eutrophic reservoirs are harmful to several organisms including zooplankton, which often act as vectors of these secondary metabolites, because they consume cyanobacteria, bioaccumulate the cyanotoxins and pass them on along the food chain. Microcystins are among the most commonly found cyanotoxins and often cause zooplankton mortality. Although cyanobacterial blooms are common and persistent in Mexican water bodies, information on the bioaccumulation of cyanotoxins is scarce. In this study we present data on the bioaccumulation of cyanotoxins from Planktothrix agardhii, Microcystis sp., Cylindrospermopsis raciborskii and Dolichospermum planctonicum blooms in the seston (suspended particulate matter more than 1.2 μm) by zooplankton and fish (tilapia (Oreochromis niloticus) and mesa silverside (Chirostoma jordani) samples from Lake Zumpango (Mexico City). The cyanotoxins were extracted from the seston, zooplankton and fish tissue by disintegration using mechanical homogenization and 75% methanol. After extraction, microcystins were measured using an ELISA kit (Envirologix). Concentration of microcystins expressed as equivalents, reached a maximum value of 117 μg g-1 on sestonic samples; in zooplankton they were in the range of 0.0070-0.29 μg g-1. The dominant zooplankton taxa included Acanthocyclops americanus copepodites, Daphnia laevis and Bosmina longirostris. Our results indicate twice the permissible limits of microcystins (0.04 μg kg-1 d-1) for consumption of cyanobacterial products in whole fish tissue of Chirostoma jordani. The data have been discussed with emphasis on the importance of regular monitoring of water bodies in Mexico to test the ecotoxicological impacts of cyanobacterial blooms and the risk that consumption of products with microcystins could promote.
Collapse
Affiliation(s)
- Cesar Alejandro Zamora-Barrios
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - S Nandini
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico.
| | - S S S Sarma
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico
| |
Collapse
|
3
|
Romero-Oliva CS, Contardo-Jara V, Pflugmacher S. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 2015; 105:62-73. [PMID: 26325293 DOI: 10.1016/j.toxicon.2015.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 01/10/2023]
Abstract
Recent studies evidence that macrophytes can uptake and bioaccumulate microcystins (MC) from contaminated environments, suggesting their use in phytoremediation. In the present study Ceratophyllum demersum, Egeria densa and Hydrilla verticillata were exposed to cell free crude extracts (CE) containing three MC congeners MC-LR, MC-RR and MC-YR at a total MC concentration of 104.4 ± 7.6 μg/L from Lake Amatitlán, Guatemala. Time dependent total glutathione (tGSH), glutathione disulfide (GSSG), disappearance of MC from exposure medium and macrophyte uptake as well as calculated uptake and biotransformation rates and bioconcentration factors (BCF) were monitored after 1, 4, 8 hours (h) and 1, 3, 7 and 14 days (d). Results showed that tGSH concentrations in all exposed macrophytes were enhanced by CE. Disappearance of 62.1 ± 13, 40.8 ± 3.1 and 37.8 ± 3.5 μg/L total MCs from exposure mediums with E. densa, H. verticillata and C. demersum were observed after 1 h. Followed by the total elimination of MCs in exposure medium from H. verticillata after 14 d. Highest MC bioaccumulation capacity (BCF), was observed in E. densa followed by C. demersum and H. verticillata. The here presented results imply the strong MC phytoremediation potential of the evaluated macrophytes.
Collapse
Affiliation(s)
- Claudia Suseth Romero-Oliva
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Valeska Contardo-Jara
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Stephan Pflugmacher
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| |
Collapse
|
4
|
Liu W, Qiao Q, Chen Y, Wu K, Zhang X. Microcystin-LR exposure to adult zebrafish (Danio rerio) leads to growth inhibition and immune dysfunction in F1 offspring, a parental transmission effect of toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:360-367. [PMID: 25105566 DOI: 10.1016/j.aquatox.2014.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MCs) are algal toxins produced intracellularly within the cyanobacteria cells. MCs exposure exerts great harm to the reproductive system of fish and deteriorates the quality of eggs and sperms, and has further adverse effects on early developmental stages of fish. Whether the MC toxicity can be parentally transmitted to offspring, even though the embryos and larvae are free of MC exposure? In the present study, adult zebrafish were continuously exposed to MC-LR (with dose of 1, 5 and 20 μg/L) for 30 days. After MC-LR exposure, fertilized eggs were collected and the following F1 generation was reared in water containing no MC-LR until 60 days post fertilization (dpf). In F1 offspring, both body weight and body length were evidently dropped. Some growth and immune related genes were detected using the real-time PCR. The transcriptional levels of these genes significantly decreased in F1 offspring of zebrafish whose parents were treated with 5 and 20 μg/L MC-LR. The activities of some antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) significantly dropped in 5 and 20 μg/L MC-LR groups, and the malondialdehyde (MDA) levels markedly increased in all the three treatment groups. Furthermore, distinct pathological changes in liver were observed in F1 zebrafish. Our findings show that the MC-LR exposure to parental zebrafish results in liver damage and evidently influences the growth and immune function in F1 offspring. We consider this damage as a parental transmission effect of microcystin toxicity. Further mechanism studies are necessary to elucidate this transmission effect.
Collapse
Affiliation(s)
- Wanjing Liu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Qin Qiao
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Yuanyuan Chen
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Kang Wu
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China
| | - Xuezhen Zhang
- Fisheries College of Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People's Republic of China.
| |
Collapse
|
5
|
Sorichetti RJ, McLaughlin JT, Creed IF, Trick CG. Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae. HARMFUL ALGAE 2014; 31:177-187. [PMID: 28040106 DOI: 10.1016/j.hal.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 06/06/2023]
Abstract
Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50≥103nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.
Collapse
Affiliation(s)
- Ryan J Sorichetti
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7.
| | - Jace T McLaughlin
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7.
| | - Irena F Creed
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7.
| | - Charles G Trick
- Department of Biology, Western University, London, Ontario, Canada N6A 5B7; Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
6
|
Sun H, Wang W, Geng L, Chen Y, Yang Z. In situ studies on growth, oxidative stress responses, and gene expression of juvenile bighead carp (Hypophthalmichthys nobilis) to eutrophic lake water dominated by cyanobacterial blooms. CHEMOSPHERE 2013; 93:421-427. [PMID: 23769464 DOI: 10.1016/j.chemosphere.2013.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/02/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
Cyanobacterial blooms have received increasing attention as a public biohazard for human and animal health. To assess the effect of cyanobacteria-dominant lake water on juvenile fish, we measured the responses of specific growth rate, condition factor, body weight and body length, oxidative stress, and related gene expression of juvenile bighead carp Hypophthalmichthys nobilis exposed to in situ eutrophic lake (Chl a was around 7.0μgL(-1)). Results showed in situ cyanobacteria-dominant lake water had no effect on the growth performance, but significantly elevated the contents of malondialdehyde, the expression of heat shock protein 70, and the activity of superoxide dismutase, indicating that oxidative stress occurred. Meanwhile in situ lake water significantly decreased the expression of catalase and glutathione S-transferase genes. We conclude that in situ cyanobacteria-dominated lake water was harmful to juvenile bighead carp based on the oxidative stress and changes in the related gene expression levels.
Collapse
Affiliation(s)
- Hongjie Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
7
|
Gélinas M, Juneau P, Gagné F. Early biochemical effects of Microcystis aeruginosa extracts on juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2011; 161:261-7. [PMID: 22178707 DOI: 10.1016/j.cbpb.2011.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022]
Abstract
Microcystins (MC) are usually the predominant cyanotoxins associated with cyanobacterial blooms in natural surface waters. These toxins are well-known hepatotoxic agents that proceed by inhibiting protein phosphatase in aquatic biota; recent studies have also reported oxidative stress and disruption of ion regulation in aquatic organisms. In the present study, young trout (Oncorhynchus mykiss) were exposed to crude extracts of Microsystis aeruginosa for four days at 15 °C. The level of microcystins was calculated to confirm the presence of toxins in these crude extracts: 0, 0.75, 1.8 and 5 μg/L. Protein phosphatase measured in the liver increased by at least 3-fold and is significantly as a result of exposure to these sublethal concentrations of crude extract, his indicates an early defense response against protein phosphatase inhibition from cyanotoxins. This was corroborated by the decreased phosphate content in proteins found in the liver and brain. No increase in glutathione-S transferase (GST) activity was observed and lipid peroxidation was unaffected in both liver and brain tissue exposed to the cyanobacterial extracts. The data revealed that the proportion of the reduced (metal-binding) form of metallothionein (MT) decreased by two-fold relative to the control group (with a concomitant increase in the proportion of the oxidized form). The level of phosphate associated with MT increased by 1.5-fold at the highest concentration of crude extract. Acetylcholinesterase (AChE) activity in brain tissue was decreased after exposure to the highest concentration of crude extract, suggesting a slowdown in neural activity. However, no biotransformation processes or detoxification of GST was triggered. Our findings show early sign of biochemical effects of MC-LR in young trout.
Collapse
Affiliation(s)
- Malorie Gélinas
- Environment Canada, 105 McGill Street, Montréal, Quebec, Canada H2Y 2E7.
| | | | | |
Collapse
|